

F. Y. B. B. A. (C.A.) Semester I

Lab Book

Name: ___

College Name: ______________________________________

Roll No. __

Division: __

Academic Year: _____________________________________

CA-106:

Computer Laboratory Based on

CA-104

(DBMS)

Assignment Completion Sheet

Index

Sr.No Title Signature

1 DDL Commands (Table Creation).

2 DDL Commands(Alter and Drop table).

3 DML Commands(Insert, Update and Delete).

4 RDB without Constraints.

5 Table Creation with Constraints.

6 RDB with constraints.

7 Implementation of Select Command

8 SQL Set operation.

9 Joins

10 Case Study

Name and Signature of Subject Teacher Head of Department

Date:-

Introduction

About the Book

This workbook is intended to be used by FYBBA (CA) students for their practical

purpose. It helps to the students for clearing their theoretical as well as practical concepts.

Instructions to the Students and Instructors:

- Students should carry workbook while coming to the practical.
- Students should complete all the practical assignments within given time interval.
- Instructors should check all the assignments regularly and guide to the students accordingly.

Editors:

1. Mr. Satyavan M. Kunjir

2. Mr. Yogesh Ingale

3. Mrs. Malati Tribhuwan

Relational Model

� What is Relational Model?

The relational model represents the database as a collection of relations. A relation is
nothing but a table of values. Every row in the table represents a collection of related data values.
These rows in the table denote a real-world entity or relationship.

The table name and column names are helpful to interpret the meaning of values in each row. The
data are represented as a set of relations. In the relational model, data are stored as tables.
However, the physical storage of the data is independent of the way the data are logically
organized.

� Some popular Relational Database Management Systems are:

� DB2 and Informix Dynamic Server – IBM
� Oracle and RDB – Oracle
� SQL Server and Access - Microsoft

� Relational Model Concepts:

1. Attribute: Each column in a Table. Attributes are the properties which define a relation. e.g.,
Student_Rollno, NAME,etc.

2. Tables – In the Relational model the, relations are saved in the table format. It is stored along
with its entities. A table has two properties rows and columns. Rows represent records and
columns represent attributes.

3. Tuple – It is nothing but a single row of a table, which contains a single record.
4. Relation Schema: A relation schema represents the name of the relation with its attributes.
5. Degree: The total number of attributes which in the relation is called the degree of the

relation.
6. Cardinality: Total number of rows present in the Table.
7. Column: The column represents the set of values for a specific attribute.
8. Relation instance – Relation instance is a finite set of tuples in the RDBMS system. Relation

instances never have duplicate tuples.
9. Relation key - Every row has one, two or multiple attributes, which is called relation key.
10. Attribute domain – Every attribute has some pre-defined value and scope which is known as

attribute domain

� Relational Integrity constraints:

Relational Integrity constraints are referred to conditions which must be present for a valid
relation. These integrity constraints are derived from the rules in the mini-world that the database
represents. There are many types of integrity constraints. Constraints on the Relational database
management system are mostly divided into three main categories are:

1. Domain constraints
2. Key constraints
3. Referential integrity constraints

� Domain Constraints:

Domain constraints can be violated if an attribute value is not appearing in the
corresponding domain or it is not of the appropriate data type.

Domain constraints specify that within each tuple, and the value of each attribute must be
unique. This is specified as data types which include standard data type’s integers, real numbers,
characters, Booleans, variable length strings, etc.

� Key constraints:

An attribute that can uniquely identify a tuple in a relation is called the key of the table. The value
of the attribute for different tuples in the relation has to be unique.

Example:

In the given table, CustomerID is a key attribute of Customer Table. It is most likely to have a
single key for one customer, CustomerID =1 is only for the CustomerName =" Google".

CustomerID CustomerName Status

1 Google Active

2 Amazon Active

3 Apple Inactive

� Referential integrity constraints:

Referential integrity constraints are base on the concept of Foreign Keys. A foreign key is an
important attribute of a relation which should be referred to in other relationships. Referential
integrity constraint state happens where relation refers to a key attribute of a different or same
relation. However, that key element must exist in the table.

Example:

In the above example, we have 2 relations, Customer and Billing.

Tuple for CustomerID =1 is referenced twice in the relation Billing. So we know
CustomerName=Google has billing amount $300

� Operations in Relational Model:

Four basic update operations performed on relational database model are
Insert, update, delete and select.
� Insert is used to insert data into the relation
� Delete is used to delete tuples from the table.
� Modify allows you to change the values of some attributes in existing tuples.
� Select allows you to choose a specific range of data.

Whenever one of these operations are applied, integrity constraints specified on the relational
database schema must never be violated.

� DBMS Keys: Primary, Candidate, Super, Alternate and Foreign (Example)

� What are Keys?

A DBMS key is an attribute or set of an attribute which helps you to identify a row(tuple) in a
relation(table). They allow you to find the relation between two tables. Keys help you uniquely
identify a row in a table by a combination of one or more columns in that table.

Example:

Employee ID FirstName LastName

11 Andrew Johnson

22 Tom Wood

33 Alex Hale

In the above-given example, employee ID is a primary key because it uniquely identifies an
employee record. In this table, no other employee can have the same employee ID.

� Why we need a Key?

Here, are reasons for using Keys in the DBMS system.

� Keys help you to identify any row of data in a table. In a real-world application, a table could
contain thousands of records. Moreover, the records could be duplicated. Keys ensure that you
can uniquely identify a table record despite these challenges.

� Allows you to establish a relationship between and identify the relation between tables
� Help you to enforce identity and integrity in the relationship.

DBMS has following seven types of Keys each have their different functionality:

� What is the Super key?

A superkey is a group of single or multiple keys which identifies rows in a table. A Super key
may have additional attributes that are not needed for unique identification.

Example:

EmpSSN EmpNum Empname

9812345098 AB05 Shown

9876512345 AB06 Roslyn

199937890 AB07 James

In the above-given example, EmpSSN and EmpNum name are superkeys.

� What is a Primary Key?

A column or group of columns in a table which helps us to uniquely identifies every row in that
table is called a primary key. This DBMS can't be a duplicate. The same value can't appear more
than once in the table.

� Rules for defining Primary key:

1. Two rows can't have the same primary key value
2. It must for every row to have a primary key value.
3. The primary key field cannot be null.
4. The value in a primary key column can never be modified or updated if any foreign key refers

to that primary key.

Example:

In the following example, <code>StudID</code> is a Primary Key.

StudID Roll No First Name LastName Email

1 11 Tom Price abc@gmail.com

2 12 Nick Wright xyz@gmail.com

3 13 Dana Natan mno@yahoo.com

� What is the Alternate key?

All the keys which are not primary key are called an alternate key. It is a candidate key which is
currently not the primary key. However, A table may have single or multiple choices for the
primary key.

Example: In this table.

StudID, Roll No, Email are qualified to become a primary key. But since StudID is the primary
key, Roll No, Email becomes the alternative key.

StudID Roll No First Name LastName Email

1 11 Tom Price abc@gmail.com

2 12 Nick Wright xyz@gmail.com

3 13 Dana Natan mno@yahoo.com

� What is a Candidate Key?

A super key with no repeated attribute is called candidate key.

The Primary key should be selected from the candidate keys. Every table must have at least a
single candidate key.

� Properties of Candidate key:

� It must contain unique values
� Candidate key may have multiple attributes
� Must not contain null values
� It should contain minimum fields to ensure uniqueness
� Uniquely identify each record in a table

Example: In the given table Stud ID, Roll No, and email are candidate keys which help us to
uniquely identify the student record in the table.

StudID Roll No First Name LastName Email

1 11 Tom Price abc@gmail.com

2 12 Nick Wright xyz@gmail.com

3 13 Dana Natan mno@yahoo.com

What is the foreign key?

A foreign key is a column which is added to create a relationship with another table. Foreign keys
help us to maintain data integrity and also allows navigation between two different instances of an
entity. Every relationship in the model needs to be supported by a foreign key.

Example:

DeptCode DeptName

001 Science

002 English

005 Computer

Teacher ID Fname Lname

B002 David Warner

B017 Sara Joseph

B009 Mike Brunton

In this example, we have two table, teach and department in a school. However, there is no way to
see which search work in which department.

In this table, adding the foreign key in Deptcode to the Teacher name, we can create a relationship
between the two tables.

Teacher ID DeptCode Fname Lname

B002 002 David Warner

B017 002 Sara Joseph

B009 001 Mike Brunton

This concept is also known as Referential Integrity.

� What is the Compound key?

Compound key has many fields which allow you to uniquely recognize a specific record.
It is possible that each column may be not unique by itself within the database. However, when
combined with the other column or columns the combination of composite keys become unique.

Example:

OrderNo PorductID Product Name Quantity

B005 JAP102459 Mouse 5

B005 DKT321573 USB 10

B005 OMG446789 LCD Monitor 20

B004 DKT321573 USB 15

B002 OMG446789 Laser Printer 3

In this example, OrderNo and ProductID can't be a primary key as it does not uniquely
identify a record. However, a compound key of Order ID and Product ID could be used as it
uniquely identified each record.

� What is the Composite key?

A key which has multiple attributes to uniquely identify rows in a table is called a composite key.
The difference between compound and the composite key is that any part of the compound key
can be a foreign key, but the composite key may or maybe not a part of the foreign key.

� What is a Surrogate Key?

An artificial key which aims to uniquely identify each record is called a surrogate key. These kind
of key are unique because they are created when you don't have any natural primary key. They do
not lend any meaning to the data in the table. Surrogate key is usually an integer.

Fname Lastname Start Time End Time

Anne Smith 09:00 18:00

Jack Francis 08:00 17:00

Anna McLean 11:00 20:00

Shown Willam 14:00 23:00

Above, given example, shown shift timings of the different employee. In this example, a
surrogate key is needed to uniquely identify each employee.

Surrogate keys are allowed when

� No property has the parameter of the primary key.
� In the table when the primary key is too big or complicated.

� Difference between Primary key & foreign key:

Primary Key Foreign Key

Helps you to uniquely identify a record

in the table.

It is a field in the table that is the primary key of

another table.

Primary Key never accepts null values. A foreign key may accept multiple null values.

Primary key is a clustered index and

data in the DBMS table are physically

organized in the sequence of the

clustered index.

A foreign key cannot automatically create an

index, clustered or non-clustered. However, you

can manually create an index on the foreign

key.

You can have the single Primary key in

a table.

You can have multiple foreign keys in a table.

SQL (Structured Query Language)

� What is SQL?

Structured Query language (SQL) pronounced as "S-Q-L" or sometimes as "See-Quel" is the
standard language for dealing with Relational Databases. A relational database defines
relationships in the form of tables.

SQL programming can be effectively used to insert, search, update, delete database records.

That doesn't mean SQL cannot do things beyond that. It can do a lot of things including, but not
limited to, optimizing and maintenance of databases.

Relational databases like MySQL Database, Oracle, Ms SQL Server, Sybase, etc. use SQL.

� What is NoSQL?

NoSQL is a non-relational DBMS, that does not require a fixed schema, avoids joins, and is easy
to scale. NoSQL database is used for distributed data stores with humongous data storage needs.
NoSQL is used for Big data and real-time web apps. For example companies like Twitter,
Facebook, Google that collect terabytes of user data every single day.

NoSQL database stands for "Not Only SQL" or "Not SQL." Though a better term would NoREL
NoSQL caught on. Carl Strozz introduced the NoSQL concept in 1998.

Traditional RDBMS uses SQL syntax to store and retrieve data for further insights. Instead, a
NoSQL database system encompasses a wide range of database technologies that can store
structured, semi-structured, unstructured and polymorphic data.

� Difference between SQL and NoSQL

Parameter SQL NOSQL

Definition SQL databases are primarily called

RDBMS or Relational Databases

NoSQL databases are primarily called as

Non-relational or distributed database

Design for Traditional RDBMS uses SQL syntax

and queries to analyze and get the data

for further insights. They are used for

OLAP systems.

NoSQL database system consists of

various kinds of database technologies.

These databases were developed in

response to the demands presented for the

development of the modern application.

Query

Language

Structured query language (SQL) No declarative query language

Type SQL databases are table based

databases

NoSQL databases can be document based,

key-value pairs, graph databases

Schema SQL databases have a predefined

schema

NoSQL databases use dynamic schema for

unstructured data.

Ability to

scale

SQL databases are vertically scalable NoSQL databases are horizontally scalable

Examples Oracle, Postgres, and MS-SQL. MongoDB, Redis, , Neo4j, Cassandra,

Hbase.

Best suited

for

An ideal choice for the complex query

intensive environment.

It is not good fit complex queries.

Hierarchical

data storage

SQL databases are not suitable for

hierarchical data storage.

More suitable for the hierarchical data

store as it supports key-value pair method.

Variations One type with minor variations. Many different types which include key-

value stores, document databases, and

graph databases.

Development

Year

It was developed in the 1970s to deal

with issues with flat file storage

Developed in the late 2000s to overcome

issues and limitations of SQL databases.

Open-source A mix of open-source like Postgres &

MySQL, and commercial like Oracle

Database.

Open-source

Consistency It should be configured for strong

consistency.

It depends on DBMS as some offers strong

consistency like MongoDB, whereas

others offer only offers eventual

consistency, like Cassandra.

Best Used

for

RDBMS database is the right option

for solving ACID problems.

NoSQL is a best used for solving data

availability problems

Importance It should be used when data validity is

super important

Use when it's more important to have fast

data than correct data

Best option When you need to support dynamic

queries

Use when you need to scale based on

changing requirements

Hardware Specialized DB hardware (Oracle

Exadata, etc.)

Commodity hardware

Network Highly available network (Infiniband, Commodity network (Ethernet, etc.)

Fabric Path, etc.)

Storage Type Highly Available Storage (SAN,

RAID, etc.)

Commodity drives storage (standard

HDDs, JBOD)

Best features Cross-platform support, Secure and

free

Easy to use, High performance, and

Flexible tool.

Top

Companies

Using

Hootsuite, CircleCI, Gauges Airbnb, Uber, Kickstarter

Average

salary

The average salary for any

professional SQL Developer is

$84,328 per year in the U.S.A.

The average salary for "NoSQL

developer" ranges from approximately

$72,174 per year

ACID vs.

BASE

Model

ACID(Atomicity, Consistency,

Isolation, and Durability) is a standard

for RDBMS

Base (Basically Available, Soft state,

Eventually Consistent) is a model of many

NoSQL systems

� When to use SQL?

� SQL is the easiest language used to communicate with the RDBMS
� Analyzing behavioral related and customized sessions
� Building custom dashboards
� It allows you to store and gets data from the database quickly
� Preferred when you want to use joins and execute complex queries

� When to use NoSQL?

� NoSQL DB (mongo) Vs RDBMS DB (mysql) Google Trend

� When ACID support is not needed
� When Traditional RDBMS model is not enough
� Data which need a flexible schema
� Constraints and validations logic not required to be implemented in database
� Logging data from distributed sources
� It should be used to store temporary data like shopping carts, wish list and session data

SQL language is divided into four types of primary language statements: DML, DDL, DCL and

TCL. Using these statements, we can define the structure of a database by creating and altering

database objects, and we can manipulate data in a table through updates or deletions. We also can

control which user can read/write data or manage transactions to create a single unit of work.

The four main categories of SQL statements are as follows:

1. DML (Data Manipulation Language)

2. DDL (Data Definition Language)

3. DCL (Data Control Language)

4. TCL (Transaction Control Language)

� DML (Data Manipulation Language):

DML statements affect records in a table. These are basic operations we perform on data such as

selecting a few records from a table, inserting new records, deleting unnecessary records, and

updating/modifying existing records.

� DML statements include the following:

SELECT – select records from a table

INSERT – insert new records

UPDATE – update/Modify existing records

DELETE – delete existing records

1. Insert: - Insert data into a table.

Syntax:-

 INSERT INTO table_name (column, column1, column2, column3, ...)

 VALUES (value, value1, value2, value3 ...)

 Example:-

 INSERT INTO Student (Roll_No, Name, Age) VALUES ('5','Satyavan','19');

2. Update :-

The UPDATE statement in SQL is used to update the data of an existing table in database. We
can update single columns as well as multiple columns using UPDATE statement as per our
requirement.

 Syntax :

 UPDATE table_name SET column1 = value1, column2 = value2,...

 WHERE condition;

 table_name: name of the table

 column1: name of first , second, third column....

 value1: new value for first, second, third column....

 Condition: condition to select the rows for which the

 values of columns need to be updated.

Example:-

Updating single column: Update the column NAME and set the value to ‘Satyavan’ in all the
rows where Age is 35.
UPDATE Student SET NAME = 'Satyavan' WHERE Age = 35;

3. DELETE Statement

The DELETE Statement in SQL is used to delete existing records from a table. We can

delete a single record or multiple records depending on the condition we specify in the

WHERE clause.

DELETE FROM table_name WHERE some_condition;

table_name: name of the table

some_condition: condition to choose particular record.

Example:-

DELETE FROM Student WHERE NAME = 'Satyavan';

� DDL (Data Definition Language):

DDL statements are used to alter/modify a database or table structure and schema. These

statements handle the design and storage of database objects.

� CREATE – create a new Table, database, schema

� ALTER – alter existing table, column description

� DROP – delete existing objects from database.

� The Create Command:

The create table command defines each column of the table uniquely.

Each column has minimum of three attributes.

� Name
� Data type
� Size (column width).

Each table column definition is a single clause in the create table syntax.
Each table column definition is separated from the other by a comma.

Finally, the SQL statement is terminated with a semicolon.

Create Table "tablename"

("column1" "data type",

"column2" "data type",

"column3" "data type",

...

"ColumnN" "data type");

The Structure of Create Table Command
Table name is Student

 Column name Data type Size

 Roll_no number 3

 Name Varchar2 30

 DOB Date

 Address varchar2 50

Example:

 CREATE TABLE Student
 (Roll_no number(3),
 Name varchar2(30),
 DOB date,
 Address varchar2(50));

� The DROP Command:

Syntax:
DROP TABLE <table_name>

Example:
DROP TABLE Student;
It will destroy the table and all data which will be recorded in it.

� The ALTER Command:

By The use of ALTER TABLE Command we can modify our exiting table.
Adding New Columns

Syntax:
 ALTER TABLE <table_name>
 ADD (<NewColumnName> <Data_Type>(<size>),......n)

Example:
 ALTER TABLE Student ADD (Age number(2), Marks number(3));

The Student table is already exist and then we added two more columns Age and
Marks respectively, by the use of above command.

Dropping a Column from the Table

Syntax:
ALTER TABLE <table_name> DROP COLUMN <column_name>

Example:
ALTER TABLE Student DROP COLUMN Age;
This command will drop particular column

Modifying Existing Table

Syntax:
ALTER TABLE <table_name> MODIFY (<column_name> <NewDataType>(<NewSize>))

Example:
ALTER TABLE Student MODIFY (Name Varchar2(40));

The Name column already exist in Student table, it was char and size 30, now it is modified by
Varchar2 and size 40.

� Restriction on the ALTER TABLE:

Using the ALTER TABLE clause the following tasks cannot be performed.

• Change the name of the table
• Change the name of the column

Decrease the size of a column if table data exists

� DCL (Data Control Language):

DCL statements control the level of access that users have on database objects.

� GRANT – allows users to read/write on certain database objects

� REVOKE – keeps users from read/write permission on database objects

� TCL (Transaction Control Language):

TCL statements allow you to control and manage transactions to maintain the integrity of data

within SQL statements.

� BEGIN Transaction – opens a transaction

� COMMIT Transaction – commits a transaction

� ROLLBACK Transaction – ROLLBACK a transaction in case of any error

� Fetching Data in the Table (Select Command)

Once data has been inserted into a table, the next most logical operation would be to view

what has been inserted. The SELECT SQL verb is used to achieve this.

All Rows and All Columns

Syntax: SELECT * FROM Table_name;

eg: Select * from Student;
 It will show all the table records.

SELECT First_name, DOB FROM STUDENT WHERE Roll_no = '101'; Cover it by single
inverted comma if its datatype is varchar or char.

This Command will show one row. Because you have given condition for only one row and
particular records. If condition which has given in WHERE Clause is true then records will be
fetched otherwise it will show no records selected.

� Eliminating Duplicates:

A table could hold duplicate rows. In such a case, you can eliminate duplicates.

Syntax: SELECT DISTINCT col, col, .., FROM table_name;
eg : SELECT DISTINCT * FROM Student;

or : SELECT DISTINCT first_name, city, pincode FROM Student;

It scans through entire rows, and eliminates rows that have exactly the same contents in
each column.

� Sorting DATA:

The Rows retrieved from the table will be sorted in either Ascending or Descending order
depending on the condition specified in select statement, the Keyword has used ORDER BY.

SELECT * FROM Student
ORDER BY First_Name;

it will in show records as alphabetical order from A to Z ascending order. If you want Descending
order means Z to A then used DESC Keyword at last.

eg : SELECT first_name, city,pincode FROM Student
 ORDER BY First_name DESC;

Aggregate Functions are all about

• Performing calculations on multiple rows
• Of a single column of a table
• And returning a single value.

Aggregate functions namely;

1) COUNT
2) SUM
3) AVG
4) MIN
5) MAX

Why use aggregate functions.

From a business perspective, different organization levels have different information
requirements. Top levels managers are usually interested in knowing whole figures and not
necessary the individual details.

Aggregate functions allow us to easily produce summarized data from our database.

• Least rented movies.
• Most rented movies.

• Average number that each movie is rented out in a month.

We easily produce above reports using aggregate functions.

Aggregate functions in detail.

COUNT Function:

The COUNT function returns the total number of values in the specified field. It works on both
numeric and non-numeric data types. All aggregate functions by default exclude nulls values
before working on the data.

COUNT (*) is a special implementation of the COUNT function that returns the count of all the
rows in a specified table. COUNT (*) also considers Nulls and duplicates.

The table shown below shows data in movierentals table

reference_
number

transaction_
date

return_date membership_
number

movie_id movie_
returned

11 20-06-2012 NULL 1 1 0

12 22-06-2012 25-06-
2012

1 2 0

13 22-06-2012 25-06-
2012

3 2 0

14 21-06-2012 24-06-
2012

2 2 0

15 23-06-2012 NULL 3 3 0

Let's suppose that we want to get the number of times that the movie with id 2 has been rented out

SELECT COUNT(`movie_id`) FROM `movierentals` WHERE `movie_id` = 2;

Executing the above query in SQL

COUNT('movie_id')

3

� DISTINCT Keyword:

The DISTINCT keyword that allows us to omit duplicates from our results. This is achieved by
grouping similar values together.

To appreciate the concept of Distinct, lets execute a simple query

SELECT `movie_id` FROM `movierentals`;

movie_id

1

2

2

2

3

Now let's execute the same query with the distinct keyword -
SELECT DISTINCT `movie_id` FROM `movierentals`;

As shown below, distinct omits duplicate records from the results.

movie_id

1

2

3

 MIN function:

The MIN function returns the smallest value in the specified table field.

As an example, let's suppose we want to know the year in which the oldest movie in our library
was released, we can use MIN function to get the desired information.

The following query helps us achieve that
SELECT MIN(`year_released`) FROM `movies`;

Executing the above query in SQL

MIN('year_released')

2005

MAX function:

Just as the name suggests, the MAX function is the opposite of the MIN function.
It returns the largest value from the specified table field.

Let's assume we want to get the year that the latest movie in our database was released. We can
easily use the MAX function to achieve that.

The following example returns the latest movie year released.

SELECT MAX(`year_released`) FROM `movies`;

 MAX('year_released')

2012

 SUM function:

Suppose we want a report that gives total amount of payments made so far. We can use the
SUM function which returns the sum of all the values in the specified column. SUM works on
numeric fields only. Null values are excluded from the result returned.

The following table shows the data in payments table-

payment_
id

membership_
number

payment_
date

Description amount_
paid

external_
reference
_number

1 1 23-07-2012 Movie rental payment 2500 11

2 1 25-07-2012 Movie rental payment 2000 12

3 3 30-07-2012 Movie rental payment 6000 NULL

The query shown below gets the all payments made and sum them up to return a single result.

SELECT SUM(`amount_paid`) FROM `payments`;

SUM('amount_paid')

10500

AVG function:

AVG function returns the average of the values in a specified column. Just like the SUM
function, it works only on numeric data types.

 Suppose we want to find the average amount paid. We can use the following query -
SELECT AVG(`amount_paid`) FROM `payments`;

AVG('amount_paid')

3500

Normalization

Normalization is a process of organizing the data in database to avoid data redundancy, insertion
anomaly, update anomaly & deletion anomaly. Let’s discuss about anomalies first then we will
discuss normal forms with examples.

� Anomalies in DBMS

There are three types of anomalies that occur when the database is not normalized. These are –
Insertion, update and deletion anomaly. Let’s take an example to understand this.

Example: Suppose a manufacturing company stores the employee details in a table named
employee that has four attributes: emp_id for storing employee’s id, emp_name for storing
employee’s name, emp_address for storing employee’s address and emp_dept for storing the
department details in which the employee works. At some point of time the table looks like this:

emp_id emp_name emp_address emp_dept

101 Rick Delhi D001

101 Rick Delhi D002

123 Maggie Agra D890

166 Glenn Chennai D900

The above table is not normalized. We will see the problems that we face when a table is not
normalized.
Update anomaly: In the above table we have two rows for employee Rick as he belongs to two
departments of the company. If we want to update the address of Rick then we have to update the
same in two rows or the data will become inconsistent. If somehow, the correct address gets
updated in one department but not in other then as per the database, Rick would be having two
different addresses, which is not correct and would lead to inconsistent data.

� Insert anomaly: Suppose a new employee joins the company, who is under training and
currently not assigned to any department then we would not be able to insert the data into the
table if emp_dept field doesn’t allow nulls.

� Delete anomaly: Suppose, if at a point of time the company closes the department D890 then
deleting the rows that are having emp_dept as D890 would also delete the information of
employee Maggie since she is assigned only to this department.

To overcome these anomalies we need to normalize the data. In the next section we will discuss
about normalization.

� Normalization

Here are the most commonly used normal forms:

• First normal form(1NF)
• Second normal form(2NF)
• Third normal form(3NF)
• Boyce & Codd normal form (BCNF)

� First normal form (1NF):

As per the rule of first normal form, an attribute (column) of a table cannot hold multiple
values. It should hold only atomic values.
Example: Suppose a company wants to store the names and contact details of its employees. It
creates a table that looks like this:

Emp_id Emp_name Emp_address Emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur
8812121212
9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore
9990000123
8123450987

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in the
same field as you can see in the table above.
This table is not in 1NF as the rule says “each attribute of a table must have atomic (single)
values”, the emp_mobile values for employees Jon & Lester violates that rule.

To make the table complies with 1NF we should have the data like this:

Emp_id Emp_name Emp_address Emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur 8812121212

102 Jon Kanpur 9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

104 Lester Bangalore 8123450987

� Second normal form (2NF):

A table is said to be in 2NF if both the following conditions hold:

• Table is in 1NF (First normal form)
• No non-prime attribute is dependent on the proper subset of any candidate key of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

Example: Suppose a school wants to store the data of teachers and the subjects they teach.
They create a table that looks like this: Since a teacher can teach more than one subjects, the table
can have multiple rows for a same teacher.

Teacher_id Subject Teacher_age

111 Maths 38

111 Physics 38

222 Biology 38

333 Physics 40

333 Chemistry 40

Candidate Keys: {teacher_id, subject}
Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF
because non prime attribute teacher_age is dependent on teacher_id alone which is a proper subset
of candidate key. This violates the rule for 2NF as the rule says “no non-prime attribute is
dependent on the proper subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

Teacher_id Teacher_age

111 38

222 38

333 40

teacher_subject table:

teacher_id Subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

� Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

• Table must be in 2NF
• Transitive functional dependency of non-prime attribute on any super key should be

removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each
functional dependency X-> Y at least one of the following conditions hold:

• X is a super key of table
• Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example: Suppose a company wants to store the complete address of each employee, they create a
table named employee_details that looks like this:

emp_idemp_name emp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}
Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any
candidate keys.

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is
dependent on emp_id that makes non-prime attributes (emp_state, emp_city & emp_district)
transitively dependent on super key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to
remove the transitive dependency:

employee table:

Emp_id Emp_name Emp_zip

1001 John 282005

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table:

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

� Boyce Codd normal form (BCNF):

It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter
than 3NF. A table complies with BCNF if it is in 3NF and for every functional dependency X->Y,
X should be the super key of the table.

Example: Suppose there is a company wherein employees work in more than one
department. They store the data like this:

emp_idemp_nationality emp_dept dept_type dept_no_of_emp

1001 Austrian Production and planning D001 200

1001 Austrian Stores D001 250

1002 American design and technical support D134 100

1002 American Purchasing department D134 600

Functional dependencies in the table above:

emp_id->emp_nationality
emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables like this:
emp_nationality table:

Emp_id Emp_nationality

1001 Austrian

1002 American

emp_dept table:

Emp_dept Dept_type Dept_no_of_emp

Production
and planning

D001 200

Stores D001 250

design and
technical
support

D134 100

Purchasing
department

D134 600

emp_dept_mapping table:

Emp_id Emp_dept

1001 Production and planning

1001 Stores

1002 design and technical support

1002 Purchasing department

Functional dependencies:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys:

For first table: emp_id

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key.

Exercise 1: DDL(Data Definition Language)

Creating Tables:

� Create table for the information given below by choosing appropriate data types and

also specifying proper primary key constraint on fields which are underlined

1. Player (player_id , name, Birth_date ,Birth_place, game_name)

2. Student (roll_no, name,class,per,birth_date)

3. Project (project_id, project_name , project_description ,status)

4. Donor (donor_no, donor_name,blood_group,last_date)

� Create table for the information given below by choosing appropriate data types and

also specifying proper primary key constraint on fields which are underlined.

1. Property (property_id, property_desc , area, rate, agri_status)

2. Actor (actor_id, Actor_name, birth_date)

3. Movie(movie-no, name, release-year)

4. Hospital(hno,hname,hcity)

� Create table for the information given below by choosing appropriate data types and

also specifying proper primary key constraint on fields which are underlined.

1. Employee(ENo, EName, Joining_date,company_name,salary,Designation)

2. College(College_Code,College_Name,Address,Establish_year)

3. Doctor(Dno, Dname, Specialization,Qualification)

4. ClassRoom(CRoomNo,location,capacity)

Signature of the instructor Date Remark

Exercise 2: Alter Table and Drop Table

� Create table student(Roll_no, sname, date_of_birth). Add new column into student relation
named address as a text data type and a column phone of data type integer.

� Create table driver (licence_no, Name, Address) and perform the following queries
1. Add new column age of data type integer.
2. Alter table by modifying driver_name to “Patil”
3. Alter table driver ,drop the column age.
4. Remove the driver table from the database.

� Create table Game (name, no-of-players, captain_name) and perform the following queries

1. Add new column game_no of data type integer.
2. Alter table by adding constraint uppercase to captain_name.
3. Modify table by adding the column game_duration.
4. Add column game_type with values cricket,hockey,tennis.
5. Remove game table from the database.

Signature of the instructor Date Remark

Exercise 3: DML Commands

� Consider the following table Employee(ENo, EName, Salary, DOJ,Qualification) and

answer the following query.

1. Insert at least five records into the table.

2. Update the salary of employee to 50000 whose ENo is 1.

3. Delete the details of employee whose ENo is 5.

4. Update the Qualification of employee to “MCS NET” whose Name is Mr.Satyavan.

5. Update the salary of employee to 40000 whose qualification is “MCS NET” and

 Name is “Ajay”

� Consider the following table Hospital (HNo, HName, Addr, Est_Year , speciality) and

answer the following query.

1. Insert at least five records into the table.

2. Update an address of hospital to “Pimple Gurav” whose name is “Birla”.

3. Update the specialty of hospital to “Multi” whose established year is between 1990 to

2000.

4. Delete the details of Hospital whose address is “Pimpri”.

� Consider the following table Student (Roll_No, Name, class, DOB, college) and answer

the following query.

1. Insert at least 10 records into the table.

2. Update the class of student to “TY” whose birth date is ‘18/03/1999’.

3. Delete the details of students whose college is “Dr.D Y Patil”.

4. Update the college of student to “Dr. D Y Patil “ whose name is “Yash”.

Signature of the instructor Date Remark

Exercise 4: RDB without Constraints:

� Consider the following entities and their relationships. Create a RDB in 3 NF for the

following and answer the queries:

 Emp(eno ,ename ,designation ,salary,DOJ)
 Dept(dno,dname ,loc)

 The relationship between Dept & Emp is one-to-many.

1. Insert at least five records into the tables.
2. Display the names of employees who are working in “Quality Department”.
3. Display the name of employee who is ‘Manager’ of “Purchase Department”.
4. Display the name of department whose location is “Baramati” and “Mr. Pawar” is

working in it.
5. Display the names of employees whose salary is greater than 50000 and

department is “Quality”.

� Consider the following entities and their relationships. Create a RDB in 3 NF for the

following and answer the queries:

 Hospital(hno ,hname , city, Est_year)

 Doctor(dno , dname , addr, Speciality)

The relationship between Hospital and Doctor is one - to – Many

1. Insert at least 10 records into the tables.
2. Display the names of hospitals which are located at “Pimpri” city.
3. Display the names of doctors who are working in “Birla” Hospital and city name is

“Chinchwad”.
4. Display the specialty and name of doctor who is working in “Ruby” hospital and

his address is “Pimple Gurav”.
5. Display the names of doctors whose speciality is “medicine”

� Consider the following entities and their relationships. Create a RDB in 3 NF for the

following and answer the queries:

Patient (PCode, PName , Addr , Disease)
 Bed (Bed_No, RoomNo, loc)

 Relationship: - A one-one relationship between patient and bed.
1. Insert at least five records into the tables.

2. Display the names of patients who are admitted in room no 101.

3. Display the disease of patient whose bed_No is 1.

4. Give the roon_no and bed_no of patient whose name is “Mr Ajay”.

Signature of the instructor Date Remark

Exercise 5: Table Creation with Constraints:

� Consider the following tables and integrity constraints given and create the tables

accordingly:

1. Machine(Mid, MName NOT NULL, MType, MPrice , MCost)

 Constraints: 1. MName should be in uppercase.

 2. MType can be (‘drilling’, ‘milling’, ‘lathe’, ‘turning’,
 ‘grinding’).

 3. MPrice should be greater than zero.

 Table level constraint: MCost less than MPrice.

2. Policy(No, Name NOT NULL, Type , Sale_Date, Intro_date)

 Constraints: 1. Name should be in lowercase.
 2. Type can be (‘life’, ‘vehicle’, ‘accident’)

 Table level constraint: Sale_date should be greater than Intro_date.

3. Employee (EmpNo, Emp_Name NOT NULL, Emp_desig, Emp_sal , Emp_uid)

 Constraints:

1. Emp_name should be in uppercase.

2. Emp_desg can be (‘Manager’, ‘staff’, ‘worker’).

3. Emp_sal should be greater than zero.

 Table level constraint: Emp_uid not equal to Emp_id

3 Room(room_no , type, price);

 Constraints:

1. Room type must be one of single, double, family.

2. Price must be between Rs.500/- and 1000/-.

3. Room no must be between 1 and 100.

Signature of the instructor Date Remark

Exercise 6: RDB with Constraints:

� Consider the following Entities and Relationships

 Sales_order(ordNo, ordDate)

Client (clientNo, ClientName, addr)

 Constraint: Primary key, ClientName should not be NULL.

A client can give one or more sales_orders ,but a sales_order belongs to exactly

one client. Create the relations accordingly, so that the relationship is handled properly

and the relations are in normalized form(3 NF) and perform the following tasks.

1. Insert two client records into client table.

2. Insert 3 sales records for each client.

3. Change order date of client_No ‘C004’ to 18/03/2019

4. Delete all sale records having order date before 10 /02/2018.

5. Display date wise sales_order given by clients.

� Consider the following Entities and Relationships
 Customer (cust_no, cust_name, address, city)
 Loan (loan_no, loan_amt)

 Relation between Customer and Loan is Many to Many

 Constraint: Primary key, loan_amt should be > 0.

 Create a Database in 3NF & write queries for following.
1. Find details of all customers whose loan is greater than 10 lakhs.
2. List all customers whose name starts with 'sa'.
3. List names of all customers in descending order who has taken a loan in Pimpri

city.
4. Display customer details having maximum loan amount.
5. Calculate total of all loan amount.

� Consider the following Entities and Relationships
Department (dept_no, dept_name, location)

 Employee (emp_no, emp_name, address, salary, designation)
 Relation between Department and Employee is One to Many

Constraint: Primary key, salary should be > 0.

Create a Database in 3NF & write queries for following.

1. Find total salary of all the employees from computer science dept.
2. Find the name of department whose average salary is above 10000.
3. Count the number of employees in each department.
4. Display the maximum salary of each department.
5. Display department wise employee list.
6. Increase Salary of “Managers” by 15%

7. Delete all Employees who are working as “clerk”.

� Consider the following Entities and Relationships
Project (pno, pname, start_date, budget, status)
Department (dno, dname, HOD)
Relation between Project and Department is Many to One

 Constraint: Primary key.
 Project Status Constraints: C – completed,
 P-Progressive, I-Incomplete

 Create a Database in 3NF & write queries for following.

1. List the project name and department details worked in projects that are
‘Complete’.

2. Display total budget of each department.
3. Display incomplete project of each department
4. Find the names of departments that have budget greater than 50000 .
5. Display all project working under 'Mr.Desai'.

� Consider the following Entities and Relationships
Room (roomno, desc, rate)
Guest (gno, gname, no_of_days)
Relation between Room and Guest is One to One.

 Constraint: Primary key, no of days should be > 0.

Create a Database in 3NF & write queries for following.

1. Display room details according to its rates in ascending order.
2. Find the names of guest who has allocated room for more than 3 days.
3. Find no. of AC rooms.
4. Display total amount for NON-AC rooms.
5. Find names of guest with maximum room charges.

� Consider the following Entities and Relationships
 Book (Book_no, title, author, price, year_published)
 Customer (cid, cname, addr)
 Relation between Book and Customer is Many to Many with quantity as
 descriptive attribute.

 Constraint: Primary key, price should be >0.

 Create a Database in 3NF & write queries for following.
1. Display customer details from 'Mumbai'.
2. Display author wise details of book.
3. Display all customers who have purchased the books published in the year 2013.
4. Display customer name that has purchased more than 3 books.
5. Display book names having price between 100 and 200 and published in the year

2013.

� Consider the following Entities and Relationships
Property (pno, desc, area, rate)
Owner (owner_name, addr, phno)
Relation between owner and Property is One to Many.

Constraint: Primary key, rate should be > 0

Create a Database in 3NF & write queries for following.
1. Display area wise property details.
2. Display property owned by 'Mr.Patil' having minimum rate.
3. Display all properties with owner name that having highest rate of properties

located in Chinchwad area.
4. Display owner name having maximum no. of properties.
5. Delete all properties from “pune” owned by “ Mr. Joshi”.

6. Display all the properties from Mumbai owned by “Mr. Patil”.

7 Update the phone Number of “Mr Talure” to 9923323366 who having property at

 Pimpri.

� Consider the following Entities and Relationships
 Employee (emp_no, name, skill, payrate)

Position (posting_no, skill)
 Relation between Employee and Position is Many to Many with day and shift as
 descriptive attribute.

 Constraint: Primary key, payrate should be > 0.

 Create a Database in 3NF & write queries for following.

1. Find the names and rate of pay all employees who allocated a duty.
2. Give employee number who are working at posting_no. 201, but don’t have the

skills of waiter.
3. Display a list of names of employees who have skill of chef and who has

assigned a duty.
4. Display emp_no and dates for all employees who are working on Tuesday and at

least one other day.
5. Display shiftwise employee details.

� Consider the following Entities and Relationships

Bill (billno, day, tableno, total)
Menu (dish_no, dish_desc, price)
Relation between Bill and Menu is Many to Many with quantity as descriptive attribute.

Constraint: Primary key, price should be > 0.

Create a Database in 3NF & write queries for following.

1. Display receipt which includes bill_no with Dish description, price, quantity and
total amount of each menu.

2. Find total amount collected by hotel on date 08/01/2013

3. Count number of menus of billno 301.
4. Display menu details having price between 100 and 500.
5. Display total number of bills collected from each table on 01/12/2013.

Signature of the instructor Date Remark

Exercise 7: Demonstration of Select Command

� Create the following tables (primary keys are underlined).

Emp(eno,ename,sal,address,ph_no)
Dept(dno, name, loc)

Emp and Dept are related with many to one with each other. Create the Relations
accordingly, so that the relationship is handled properly and relations are in normalized
form (3NF).

 Execute following select queries & write the business task performed by each

 query.

1. Select * from emp;
2. Select empno, name from emp;
3. Select distinct deptno from emp;
4. Select * from emp where deptno = ___;
5. Select * from emp where address = ‘pune’ and sal > _____;
6. Select * from emp where address = ‘pune’ and salary between _____

and _____;
7. Select * from emp where name like ‘---%’
8. Select * from emp where name like ‘%and%’
9. Select * from emp where salary is null;
10. Select * from emp order by eno;
11. Select * from emp order by deptno, eno desc;
12. Select deptno as department, sum(salary) as total from emp group by

deptno order by deptno;
13. Select deptno as department , count(eno) as total_emp from emp group

by deptno having count(eno) > _____ order by deptno;
14. select avg(salary) from emp;
15. select max(salary),deptno from emp group by deptno having max(sal) >

__________;
16. select deptno, min(salary) from emp order by deptno;
17. update emp set salary = salary + 0.5*salary where deptno = (select

deptno from department where dname = ‘finance’);
18. update emp set deptno = (select deptno from department where dname

= ‘finance’) Where deptno = (select deptno from department where
dname = ‘inventory’);

� Create the following tables (primary keys are underlined).

Person (pnumber, pname, birthdate, income)
Area(aname, area_type)

An area can have one or more person living in it , but a person belongs to exactly
one area. The attribute ‘area_type’ can have values as either urban or rural.

Create the Relations accordingly, so that the relationship is handled properly and
the relations are in normalized form (3NF).

Assume appropriate data types for all the attributes. Add any new attributes as
required, depending on the queries. Insert sufficient number of records in the relations /
tables with appropriate values as suggested by some of the queries.

 Execute following select queries & write the business task performed by each query.

1 List the names of all people living in ‘______’ area.
2 List details of all people whose names start with the alphabet ‘_’ & contains

maximum _alphabets in it.
3 List the names of all people whose birthday falls in the month of ______.
4 Give the count of people who are born on ‘_______’
5 Give the count of people whose income is below ______.
2. List names of all people whose income is between _____ and _____;
3. List the names of people with average income
4. List the sum of incomes of people living in ‘____’
5. List the names of the areas having people with maximum income (duplicate
 areas must be omitted in the result)
6. Give the count of people in each area
7. List the details of people living in ‘____’ and having income greater than
 _____;
8. List the details pf people, sorted by person number
9. List the details of people, sorted by area, person name
10. List the minimum income of people.
11. Transfer all people living in ‘pune’ to ‘mumbai’.
12. Delete information of all people staying in ‘urban’ area

� Create the following tables (primary keys are underlined).

Emp (eno,name,dno,salary)
Project (pno,pname,control_dno,budget)

Each employee can work on one or more projects, and a project can have many

employees working in it. The number of hours worked on each project by an employee
also needs to be stored.

Create the Relations accordingly, so that the relationship is handled properly and
the relations are in normalized form (3NF).

Assume appropriate data types for the attributes. Add any new attributes, new
relations as required by the queries.

Insert sufficient number of records in the relations / tables with appropriate values
as suggested by some of the queries.

Write the queries for following business tasks & execute them.

1. list the names of departments that controls projects whose budget is greater
 than ___

2. list the names of projects, controlled by department No __, whose budget is
 greater than atleast one project controlled by department No __
3. list the details of the projects with second maximum budget
4. list the details of the projects with third maximum budget.
5. list the names of employees, working on some projects that employee
 number __ is working.
6. list the names of employees who do not work on any project that employee
 number __ works on
7. list the names of employees who do not work on any project controlled by

 ‘______’ department
8. list the names of projects along with the controlling department name, for
 those projects which has atleast __ employees working on it.
9. list the names of employees who is worked for more than 10 hrs on atleast
 one project controlled by ‘______’ dept.
10. list the names of employees , who are males , and earning the maximum
 salary in their department.
11. list the names of employees who work in the same department as ‘_____’.
12. list the names of employees who do not live in _____ or _______.

� Create the following tables (primary keys are underlined).

Movies (M_name,release_year,budget)
Actor (A_name,role,charges,A_address)
Producer (producer_id,name,P_address)

Each actor has acted in one or more movie. Each producer has produced many
movies but each movie can be produced by more than one producers. Each movie has one
or more actors acting in it, in different roles.

Create the Relations accordingly, so that the relationship is handled properly and
the relations are in normalized form (3NF).

Assume appropriate data types for the attributes. Add any new attributes, new
relations as required by the queries.

Insert sufficient number of records in the relations / tables with appropriate values

as suggested by some of the queries.

Write the queries for following business tasks & execute them.

1. List the names of actors who have acted in at least one movie, in
which ‘shahrukh’ has acted.

2. List the names of movies with the highest budget.
3. List the names of movies with the second highest budget
4. List the names of actors who have acted in the maximum number of

movies.
5. List the names of movies, produced by more than one producer.
6. List the names of actors who are given with the maximum charges

for their movie.
7. List the names of producers who produce the same movie as

‘_____’.
8. List the names of actors who do not live in _____ or _______.

Signature of the instructor Date Remark

Exercise 8: SQL Set operations

 You can combine multiple queries using the set operators UNION, UNION ALL, INTERSECT
and Except. ALL set operators have equal precedence.

 1. Union: Returns the union of two sets of values, eliminating duplicates.
 Syntax: <select query>
 Union

 <select query>

 2. Union all: Returns the union of two sets of values, retaining all duplicates.
Syntax: <select query>

 Union all
 <select query>

 3 Intersect: Returns the intersection of two sets of values, eliminating duplicates.

Syntax: <select query>
 intersect

 <select query>

 4 Intersect all: Returns the intersection of two sets of values, retaining duplicates.
Syntax: <select query>

 Intersect all
 <select query>

 5 Except: Returns the difference between two set of values, I.e returns all values from set1 , not
 contained in set2 .eliminates duplicates.

Syntax: <select query>
 except

 <select query>

 6 Except all: Returns the difference between two set of values, i.e. returns all values from set1,
 Not contained in set2 .Retains all duplicates.

Syntax: <select query>
Except all

 <select query>

� Create the following tables. (Primary Keys are underlined)

Emp(emp_id ,emp_name, address, bdate)
Investor (inv_name , inv_no, inv_date, inv_amt)

 An employee may invest in one or more investments; hence he can be an investor.

 But an investor need not be an employee of the firm.
 Create the Relations accordingly, so that the relationship is handled properly and the
relations are in normalized form (3NF).
 Assume appropriate data types for the attributes. Add any new attributes, as required
by the Queries. Insert sufficient number of records in the relations / tables.

 Write the following queries & execute them.

 1. List the distinct names of customers who are either employees, or investors or both.
 2. List the names of customers who are either employees, or investors or both.
 3. List the names of employees who are also investors.
 4. List the names of employees who are not investors.

� Create the following tables. (Primary Keys are underlined)

Student (rno,sname,address,class)
Subject (subno,subname)

Student and Subject are related with many-to-many relationship with attribute
marks and status. Create the Relations accordingly, so that the relationship is handled
properly and the relations are in normalized form (3NF).

Write the following queries & execute them.

1. List the distinct names of students who have either Electronics, or Statistics or both
subjects.

2. List the names of students who are either passed or failed.
3. List the students who have “Database” subject and they are not in “TY” class.
4. List the names of students who are not failed in any subject.
5. List the names of students not staying at “Uruli Kanchan”.

Signature of the instructor Date Remark

Exercise 9: Joins

� Consider the following relations to understand the use of joins.

Student (s_id , sname, level ,age , subject)
Class (cname , meetat ,room, fid)
Enrolled (s_id i, cname)
Faculty (fid ,fname ,deptid)

The meaning of above relationship is enrolled has one record per student _class pair

such that the student is enrolled in the class. Read the query carefully and insert sufficient
number of records in the relations / tables with appropriate values to perform the
following queries.

1. Find the names of all classes that either meet in room R128 or have five or more

students enrolled.

Sql>Select c.name from class c where c.room =’r128’ or c.name in (select e.cname

from enrolled e group by e.name having count(*)>= 5);

2. Find the name of the oldest student who is either a history subject or enrolled in a

course taught by I.teach.

Sql> Select max(s.age) from student s where (s.subject=’history’) or s.num in (select

e.num from class c ,enrolled e ,faculty f where e.name =c.name and c.fid=f.id and

f.fname =’I.teach);

3. Find the names of students enrolled in the maximum number of classes.

Sql> Select distinct s.name from student s where s.num in (select e.num from enrolled

e group by e.num having count(*) >=all (select count(*) from enrolled e2 group by

e2.num));

4. Find the names of student not enrolled in any class.

Sql> Select distinct s.name from student s where s.num not in (select e.num from

enrolled e);

5. Find the names of faculty members who teach in every room in which some class

is taught.

Sql> Select distinct f.name from faculty f where not exists ((select * from class)

except (select c1.room from class c1 where c1.fid = f.fid));

Signature of the instructor Date Remark

Exercise 10: Case Study

� Consider the following case study:

A housing society needs to manage the administrative information related to the society.
The society is made up of different types of flats like 2BHK, 1BHK, 3BHK. Each type has a well
defined square-feet area . The outright sale rate & the rental value of the flat depends on the type
of the flat. Each flat has a single owner. Each owner can have one or more flats in his name. The
name, address , phone etc of the owner need to be maintained. For each flat, its type, the floor no,
any internal specifications needs to be maintained.

The society also contains a club-house, which is rented out to flat owners , at a nominal
rate for conducting various functions / programmes. Society would like to print reports like
number of functions held in the club-house during a month / period etc.

Every month maintenance amount is collected from the owners of the flats. Society needs
to maintain this finance information, like how much amount collected for a month, whether any
defaulters for a month, sending reminders to the defaulters etc. The expenditure information
includes money spent on maintenance of the society like paying the sweepers, cleaners of the
common area of the society, any emergency expense, salaries of the security etc. Every month the
society would like to print a report of expenditure versus collection.

Design the relational database for the above, so that the following queries can be answered:

1. List the flats of 2bhk type.
2. List the 3bhk flats that are currently vacant.
3. List the functions held in clubhouse during the month of “_________”
4. List the names of owners , who have never conducted any functions in the clubhouse.
5. List the payment defaulters for the month of “April”
6. List the total expenditure for the month of _____________
7. List the month with the least expenditure.
8. Transfer the flat in the name of ___________ to ____________
9. List the names of owners, who own both a 2bhk and a _________

� Consider the following case study :

A 4-wheeler rental company needs to develop a database to store the following
information : the information about the cars , like the registration number, the chassis number, the
type of the vehicle (car, jeep, SUV etc). The vehicles may have one or more luxurious features
like AC, Stereo, tape, DVD player etc).

The company also needs to maintain the information about its drivers like driver license
no, name, address , age etc.

A car is driven by different drivers on different days, a driver may drive different cars on
different days. The company also needs information regarding the different places to which the
car had been driven down, the names of drivers who have driven it to these places along with the
name of customers who had booked the car to that place. The information of the different
destinations to which the cars from this company can be driven down, also needs to be stored.
Regarding customers, customers can book more than one car to a place. The customers are
allowed to book multiple cars to different places, in a single booking transaction. The name,

address, no of passengers travelling in the car, the destination ,the rental cost etc needs to be
stored.

The following constraints are to be defined for the vehicles, drivers, and destination places:

a) The vehicle make should be after the year 2000.
b) Only vehicles of maruti, Tata are used by the company
c) Drivers should be above 20 years of age
d) Drivers should be staying in “pune” city
e) The destination places should be within 500km radius from Pune.

Design the relational database for the above company, so that the following queries can be

answered:

1. List the names of drivers who have driven a car to “Mumbai”

2. List the name of customers who have booked a “SUV” to “satara”

3. List the names of customers who have booked cars to pune or Mumbai or Lonavla

4. List the details of cars that have never driven down to “Mumbai”

5. List the details of the place to which maximum number of customers have driven
down.

6. List the details of the driver who have driven all the vehicles of the company.
7. List the names of the drivers who have driven atleast two cars to “Mumbai
8. List the names of drivers who have also driven some vehicles to “Mumbai”

9. List the details of customers who have booked more than two vehicles to “solapur”

10. List the names of customers who have booked maximum number of vehicles

Signature of the instructor Date Remark

