

F.Y.B.B.A.(CA) Semester- II

2019-20

Lab Book

(Web Technology and RDBMS)

Roll No: ____________________________________

Name: ____________________________________

Introduction

1. About the Workbook:

This workbook is intended to be used by FYBBA(CA) students for Web Technology and

Relational Database Management System (RDBMS) Assignments in Semester–II. This

workbook is designed by considering all the practical concepts / topics mentioned in

syllabus.

2. The objectives of this Workbook are:

1) Defining the scope of the course.

2) To bring the uniformity in the practical conduction and implementation in all

colleges affiliated to SPPU.

3) To have continuous assessment of the course and students.

4) Providing ready reference for the students during practical implementation.

5) Provide more options to students so that they can have good practice before facing

the examination.

6) Catering to the demand of slow and fast learners and accordingly providing the

practice assignments to them.

3. How to use this Workbook:

The workbook is divided into two sections. Section-I is related to Web Technology

(WT) assignments and Section-II is related to RDBMS assignments.
The Section-I (WT) is divided into eight assignments. Each WT assignment has two

SET. It is mandatory for students to complete all the SET in given slot.
The Section-II (RDBMS) is divided into seven assignments. The assignments comprise

of activities to be carried out on given databases. The students have to create database,

insert appropriate records and then perform the activities specified in each of the

assignments. A pool of databases will get created as student progresses through the

assignments and these databases can be repeatedly used in subsequent assignments.
Each RDBMS assignment has two set of questions. It is mandatory for students to

complete all the SET in given slot.

4. Instructions to the students:

Please read the following instructions carefully and follow them.

• Students are expected to carry this workbook every time they come to the lab for

practical.

• Students should prepare for the assignment by reading the relevant material which is

mentioned in ready reference.

• Instructor will specify which problems to solve in the lab during the allotted slot and

student should complete them and get verified by the instructor. However, student

should spend additional hours in Lab and at home to cover all workbook assignments if

needed.

• Students will be assessed for each assignment on a scale from 0 to 5

Not done 0

Incomplete 1

Late Complete 2

Needs improvement 3

Complete 4

Well Done 5

5. Instruction to the Instructors:

Make sure that students should follow above instructions.

Explain the assignment and related concepts using white board if required or by

demonstrating the software.
Give specific input to fill the blanks in queries which can vary from student to

student.
Evaluate each assignment carried out by a student on a scale of 5 as specified above

by ticking appropriate box.
The value should also be entered on assignment completion page of the respective

Lab course.

6. Instructions to the Lab administrator:
You have to ensure appropriate hardware and software is made available to each student.

Editors:

Mr. Yogesh Ingale Dr. D. Y. Patil ACS College, Pimpri, Pune

Mr. Satyavan Kunjir Dr. D. Y. Patil ACS College, Pimpri, Pune

Mrs. Malati V. Tribhuwan Dr. D. Y. Patil ACS College, Pimpri, Pune

Reviewed By:

Dr. Ranjit D. Patil Dr. D. Y. Patil ACS College, Pimpri, Pune

Section I

Web Technology

(HTML, CSS, Java Script)

Table of contents (Section-I: HTML and Java Script)

Exercise 1: Basic HTML Tags

Exercise 2: Creating List through HTML

Exercise 3: Creating Tables trough HTML

Exercise 4: Creating Frames through HTML

Exercise 5: Creating Forms through HTML

Exercise 6: Image Mapping

Exercise 7: Styling HTML with CSS

Exercise 8: JavaScript

Assignment Completion Sheet

Sr. No Assignment Marks

(out of 5)

Teacher

Sign

1 Basic HTML Tags

2 Creating List through HTML

3 Creating Tables through HTML

4 Creating Frames through HTML

5 Creating Forms through HTML

6 Image Mapping

7 Styling HTML with CSS

8 JavaScript

Total (out of 40)

Total (out of 10)

Exercise 1: Basic HTML Tags

Introduction:

Hypertext Markup Language (HTML) is the standard markup language used to

create web pages and web applications. HTML was invented in 1990 by a scientist

called Tim Berners-Lee

Following figure shows basic HTML structure

A Html document begins with opening <html> tag and end with closing </html>

tag and is divided into two sections

1. Head

2. Body

1. Head Section: This section contains title of a web page

2. Body section: The body element contains the information that you want to

display on a web page.

Html elements:

Html documents are simply a text file made up of html elements, these elements

are called as html tags

Html Tags:

Html tags tells the browser how to present information on web page

Html tag name must enclosed between opening and closing angle brackets < tag

name >

Html tags are not case sensitive

Html tags can be of two types

1. Paired tags:

In paired tag, first tag is called as opening tag and second tag is called as

closing tag.

The opening tag actives the effect and closing tag turns the effect off.

Paired tags has three parts i.e opening tag, tag content and closing tag

Eg. Text in Bold

2. Singular tags: the singular tags are stand-alone tags which does not require any

companion tag.

Tag Attribute:

Some html tag contains attributes, which provides additional information

about element

Attributes are always specified in the start tag and come in name=value pair

e.g. Text in Size 28

Common Html Tags:

1. Html Tag: <html> …</html>

The <html> tag represent the root of an html document

The <html> tag tells the browser that this is an html document

All other html tags are nested between the <html> and </html>

2. Head Tag: <head>..</head>

It is used for indicating the head section of html document

The head tag includes a title for the document, scripts, styles and so on

3. Title Tag: <title> .. </title>

The title tag is used for declaring title of the html document

The title usually displayed in the browsers title bar (at the top)

The title tag is placed between the opening and closing head tag

4. Body Tag: <body> … </body>

The body tag define the document body

The body tag is used for indicating the main content section of html

document

The body tag contains all the content of html document such as text, images,

lists, tables, hyperlink etc.

Attributes of Body Tag:

1. Bgcolor: specifies the background color for a web page

 e.g. <body bgcolor=red> .. </body>

2. Background: specifies a background image of a web page

 e.g. <body background=“ path of image file”>..</body>

3. Text: Specifies color of text for a web page

 e.g. <body text=Yellow>..</body>

4. Link: specifies the color of unvisited links of a web page

 e.g. <body link=blue> .. </body>

5. Vlink: specifies the color of visited links of a web page

 e.g. <body vlink=green>.. </body>

Text Formatting Tags:

The html tags are used for formatting text are called as text formatting tags

1. : The tag defines bold text. Anything that appears in a ..

elements is displayed in bold

 e.g. Bold text

2. <i>: The content of <i> tag is usually displayed in italic

 e.g. <i> italic text </i>

3. <u>: The <u> tag usually results in the text being underlined. Anything

appears in a <u>..</u> is displayed with underlined

 e.g. <u> underlined text </u>

4. <s>: Anything that appears in <s>..</s> tag is displayed with strikethrough,

which is a thin line through the text

 e.g. <s> Strike Text </s>

5. <big>: Displays text in big font

 e.g. <big> Text in Big Font

6. <small>: Displays text in small font

 e.g. <small> Text in Small Font</small>

7. <sub>: This tag defines subscript text . Subscripted text can be used for

chemical formulas like H2O

 e.g. H₂O

8. <sup>: This tag defines superscript text. Superscript text can be used to

display matahematical formulas like 10X
2
+5Y

3

 e.g. 10X²+5Y<sup>3<sup>

Comment Tag: <! .. >

The comment tag is used to insert comments in the source code

Comments are not displayed in the browser

e.g. <! Example of writing comment >

Heading Tags:

The html <h1> to <h6> tags are used to define html heading.

h1> defines the most important heading while <h6> defines the least

important heading

Heading tag has attribute “align” whose value can be left, right or center

<h1> …. </h1>

<h2 align=left> ….. </h2>

<h3 align=center> …. </h3>

<h4>….. </h4>

<h5> …..</h5>

<h6 align=right> …..</h6>

<p> Tag:

The html <p> tag is used to define a paragraph

<p> tag has attribute “align” whose value can be left, right, center or justify

<p> tag is a singular tag

e.g. <p> ….

 <p align=center> ….

 Tag:

The html
 tag is used to specify line break

 tag is a singular tag

Center Tag: <center> … </center>

The content enclosed between center tag will be aligned at center place of web

page

e.g. <center> Text aligned at enter </center>

Font Tag: ….

 tag is used to add style, size an color to the text on your site

This tag specifies the font face, font size and font color of text

Attributes of Font tag:

1. color: specifies color of text

2. Face: specifies the font of the text

3. Size: specifies the size of text
e.g. Text in Red Color

 Sample Text

Marquee Tag:

A marquee tag is used to display scrolling text on a web page

Scrolling text is displayed either horizontally across or vertically down of a web

page depending on the setting

Attributes of marquee tag:

1. Direction: specifies the direction of scrolling. This will have value either up,

down, left or right

2. Behavior: specifies type of scrolling. This will have value either scroll, slide

and alternate

3. Bgcolor: specifies background color for marquee text

4. Width: specifies width of marquee text. This will have value like 10%, 20%

and so on

5. Height: specifies Height of marquee text. This will have value like 10%,

20% and so on

<Abbr> Tag:

The <abbr> tag defines an abbreviation of something

<abbr> tag shows the full version of the abbreviation when mouse pointer is

moved on that element.

e.g. <abbr title=“World Wide Web”>WWW</abbr>

<div> Tag:

The <div> element is a block-level element.

The <div> element is often used as a container for other HTML elements.

The <div> tag defines a division or a section in an HTML document.

e.g. <div style = "background- color:brown" >

<h3>This is a heading</h3>

 <p>This is a paragraph.

</div>

HTML Tag:

The tag defines an image in an HTML page. It is used to insert image on

web page

In HTML the tag has no end tag.

Ex.

Commonly used attributes of tag:

align left

right

Specifies the alignment of an image according to

surrounding elements

border Pixels Specifies the width of the border around an image

height Pixels Specifies the height of an image

hspace Pixels Specifies the whitespace on left and right side of an image

src URL Specifies the URL of an image

vspace Pixels Specifies the whitespace on top and bottom of an image

width Pixels Specifies the width of an image

Creating Hyperlink through HTML:

Hyperlinks are the primary method used to navigate between pages and Web sites.

Links can point to other web pages, web sites, graphics, files, sounds, e-mail

addresses, and other locations on the same web page.

When you move the mouse over a link, the mouse arrow will turn into a little hand.

Hyperlinks are defined with the HTML <a> tag:

link text

Ex.

Click Here

The href attribute specifies the destination address

The link text is the visible part (Click Here).

Clicking on the link text will send you to the specified address.

HTML Links - The target Attribute:

The target attribute specifies where to open the linked document.

The target attribute can have one of the following values:

• _blank - Opens the linked document in a new window or tab

• _self - Opens the linked document in the same window/tab as it was clicked

(this is default)

This example will open the linked document in a new browser window/tab:

Click Me

HTML Links - Image as Link:

It is common to use images as links:

HTML Links - Create a Bookmark:

HTML bookmarks are used to allow readers to jump to specific parts of a Web

page.

Bookmarks can be useful if your webpage is very long.

To make a bookmark, you must first create the bookmark, and then add a link to it.

When the link is clicked, the page will scroll to the location with the bookmark.

First, create a bookmark with the id attribute:

<h2 id="C4">Chapter 4</h2>

Then, add a link to the bookmark ("Jump to Chapter 4"), from within the same

page:

Jump to Chapter 4

Assignment:

Set A:

1. Create an html5 page which will display names of your family members on

separate lines in different sizes. State size of each line in its text.

2. Create an html5 page which will display names of players of Indian cricket

team with all the different text styles (bold, italic and underlined) and its

combinations on separate lines. State style of each line in its text.

3. Create an html5 page containing the polynomial expression as follows

ao + a1x+ a2x
2
 + a3 x

3

Set B:

1. Create an html5 page with following specifications

a. Title should be about MYCOLLEGE

b. Put the windows Logo image in the background

c. Place your College name at the top of the page in large text followed

by address in smaller size

d. Add names of courses offered each in a different color, style and

typeface.

e. Add scrolling text with a message of your choice

f. Add college image at the bottom

2. Create an html5 page with following specifications

a. Title should be about MYCITY

b. Place your City name at the top of the page in large text and in blue

color

c. Add names of landmarks in your city each in a different color, style

and typeface

d. One of the landmark, your college name should be scrolling

e. Add scrolling text with a message of your choice

f. Add some image at the bottom

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Exercise 2: Creating List through HTML

HTML offers web authors three ways for specifying lists of information. All lists

must contain one or more list elements. Lists may contain −

1. − An unordered list. This will list items using plain bullets.

2. − An ordered list. This will use different schemes of numbers to list

your items.

3. <dl> − A definition list. This arranges your items in the same way as they

are arranged in a dictionary.

HTML Unordered Lists ():

An unordered list is a collection of related items that have no special order or

sequence. This list is created by using HTML tag. Each item in the list is

marked with a bullet.

The type Attribute:

You can use type attribute for tag to specify the type of bullet you like. By

default, it is a disc. Following are the possible options −

<ul type = "square">

<ul type = "disc">

<ul type = "circle">

HTML Ordered Lists:

If you are required to put your items in a numbered list instead of bulleted, then

HTML ordered list will be used. This list is created by using tag. The

numbering starts at one and is incremented by one for each successive ordered list

element tagged with .

The type Attribute:

You can use type attribute for tag to specify the type of numbering you like.

By default, it is a number. Following are the possible options −

<ol type = "1"> - Default-Case Numerals.

<ol type = "I"> - Upper-Case Numerals.

<ol type = "i"> - Lower-Case Numerals.

<ol type = "A"> - Upper-Case Letters.

<ol type = "a"> - Lower-Case Letters.

The start Attribute:

You can use start attribute for tag to specify the starting point of numbering

you need. Following are the possible options −

<ol type = "1" start = "4"> - Numerals starts with 4.

<ol type = "I" start = "4"> - Numerals starts with IV.

<ol type = "i" start = "4"> - Numerals starts with iv.

<ol type = "a" start = "4"> - Letters starts with d.

<ol type = "A" start = "4"> - Letters starts with D.

HTML Definition Lists:

HTML supports a list style which is called definition lists where entries are listed

like in a dictionary or encyclopedia. The definition list is the ideal way to present

a glossary, list of terms, or other name/value list.

Definition List makes use of following three tags.

1. <dl> − Defines the start of the list

2. <dt> − A term

3. <dd> − Term definition

Assignments:

Set A:

1. Write a HTML code to generate the following output

1. Undergraduate Courses

i. BBA(CA)

ii. BCA(Science)

iii. B.Sc.(Computer Science)

2. Post Graduate Courses

i. M.Sc.(Comp.Sci.)

ii. M.Sc.(CA)

iii. MCA

2. Write a HTML code to generate the following output

a. Flowering Plant

o Rose

o Lily

o Jasmin

b. Non Flowering Plant

� Fern

� Spore

Set B

1. Write HTML code which generates the following output And Display each

element of list in different size, color & font

1. DYP

• Courses

� BCS

� BCA

2. Indira

• Courses

� BCA

� MCs

3. ATSS

• Courses

� BBA

� BCS

2. Write HTML code which generates the following output and display each

element of list in different size, color & font

• Honda

� Petrol

1) Honda City

2) Brio

� Diesel

1) Amaze

2) Brio

• Maruti-Suzuki

� Petrol

1) Swift

2) Ritz

� Diesel

1) Swift-Desire

3. Write the HTML5 code which generates the following output.

1. Coffee

2. Tea

a. Green Tea

b. Black Tea

i. Africa

ii. China

3. Milk

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Exercise 3: Creating Tables through HTML

Introduction:

The HTML <table> tag is used for defining a table. The table tag contains other

tags that define the structure of the table. The <table> tag defines an HTML table.

An HTML table consists of the <table> element and one or more <tr>, <th>,

and <td> elements.

The <tr> element defines a table row, the <th> element defines a table header, and

the <td> element defines a table cell.

Specific Attributes:

The HTML <table> tag also supports the following additional attributes −

Attribute Value Description

align right

left

center

justify

char

Specifies Visual alignment.

bgcolor rgb(x,x,x)

#hexcode

colorname

Specifies the background color of the table.

border Pixels Specifies the border width. A value of "0" means no

border.

cellpadding pixels or

%

Specifies the space between the cell borders and their

contents.

cellspacing pixels or

%

Specifies the space between cells.

Attributes of <th> and <td> tag:

align left

right

center

justify

char

Aligns the content in a

cell

bgcolor rgb(x,x,x)

#xxxxxx

Specifies the background

color of a cell

colorname

colspan Number Specifies the number of

columns a cell should

span

rowspan Number Sets the number of rows a

cell should span

valign top

middle

bottom

baseline

Vertical aligns the content

in a cell

height pixels

%

Sets the height of a cell

width pixels

%

Specifies the width of a

cell

Assignments:

Set A

1. Write html code to create following table

RollNo Name Marks

101 Nilesh Patil 80.56%

102 Pranav Kadam 90.45%

103 Suhas Choudhari 67.89%

2. Write a HTML code to display Theory Time table of FYBBA(CA)

Set B

1. Write a HTML code to display calendar of current month in tabular format.

Use proper color for week days and holidays. Display month name, year

and images as advertisement at the beginning of the calendar.

2. Write the HTML code to create the following table

Book_No

Book_Name

Price

 RS Paise

101 DBMS 200 50

102 C-Prog 150 75

103 JAVA 300 00

104 PHP 250 50

105 ASP 100 00

3. Write the HTML code which generates the following output.

Country Population (in Crores)

INDIA

1998 85

1999 90

2000 100

USA

1998 30

1999 35

2000 40

UK

1998 25

1999 30

2000 35

4. Write the HTML code which generates the following output.

Book_No

Book_Name

Price

 RS Paise

101 DBMS 200 50

102 C-Prog 150 75

103 JAVA 300 00

104 PHP 250 50

105 ASP 100 00

5. Write HTML code to create following table.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

 Course Fee Structure Year

 FY SY TY

B.Sc.(CS) 20000 25000 30000 2017

BCA(Sci) 15000 20000 25000 2018

BBA(CA) 25000 30000 35000 2019

Exercise 4: Creating Frames through HTML

Introduction:

<Frameset> Tag:

The <frameset> tag defines a frameset.

The <frameset> element holds one or more <frame> elements. Each <frame>

element can hold a separate document.

The <frameset> element specifies HOW MANY columns or rows there will be in

the frameset, and HOW MUCH percentage/pixels of space will occupy each of

them.

Attributes of Frameset Tag:

Attribute Value Description

cols pixels

%

*

Specifies the number and

size of columns in a

frameset

rows pixels

%

*

Specifies the number and

size of rows in a frameset

<frame> tag:

The <frame> tag defines one particular window (frame) within a <frameset>.

Each <frame> in a <frameset> can have different attributes, such as border,

scrolling, the ability to resize, etc.

Attributes of <frame>:

Attribute Value Description

name Text Specifies the name of a

frame

scrolling yes

no

auto

Specifies whether or not

to display scrollbars in a

frame

src URL Specifies the URL of the

document to show in a

frame

Assignments:

Set A:

1. Write a HTML code to divide the web page into 4 setion using frame as

follows

2. Write a HTML code to divide the web browser in to 4 section using frame as

follows

Set B

1. Create HTML page to Divide the frames in to different sections as shown

below and add appropriate HTML files to each frame.

First Frame : Your Name and address

Second Frame : Third Frame :

Bulleted list of favourite colours Numbered List of Cities

Fourth Frame:

Scrolling Message

Fifth Frame:

Blinking Reminders

Sixth Frame:

Name of Countries

2. Write HTML code to design a web as per given specification. Divide the

browser screen into two frames. The first frame will display the heading.

Divide the second frame into two columns. The frame on the left should be

name of cities consisting of hyperlinks. Clicking on any one of these

hyperlinks will display related information in right hand side frame as shown

below

IT Industries in INDIA

City

1. Pune

2. Mumbai

Pune

• Infosys

• Persistent

3. Write a HTML code which will divide web page in three frames. First frame

should consists of name of college as heading. Second frame should consists

of name of courses with hyperlink. Once click on any course it should

display subject of that course in third frame.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Exercise 5: Creating Form through HTML

Introduction:

The <form> Element:

The HTML <form> element defines a form that is used to collect user input. An

HTML form contains form elements.Form elements are different types of input

elements, like text fields, checkboxes, radio buttons, submit buttons, and more.

The <input> Element

The <input> element is the most important form element.The <input> element can

be displayed in several ways, depending on the type attribute.

Here are some examples:

Type Description

<input type="text"> Defines a one-line text input field

<input type="radio"> Defines a radio button (for selecting one

of many choices)

<input type="submit"> Defines a submit button (for submitting

the form)

 Ex.

<input type="text" name="firstname">

<input type="radio" name="gender" value="male" checked> Male

<input type="radio" name="gender" value="female"> Female

The Submit Button:

<input type="submit"> defines a button for submitting the form data to a form-

handler. The form-handler is typically a server page with a script for processing

input data.

Ex. <input type="submit" value="Submit">

The Action Attribute:

The action attribute defines the action to be performed when the form is submitted.

Normally, the form data is sent to a web page on the server when the user clicks on

the submit button.

<form action="/action_page.php">

The Method Attribute: The method attribute specifies the HTTP method

(GET or POST) to be used when submitting the form data:

<form action="/action_page.php" method="get">

Grouping Form Data with <fieldset>:

The <fieldset> element is used to group related data in a form.

The <legend> element defines a caption for the <fieldset> element.

Ex

<form action="/action_page.php">

 <fieldset>

 <legend>Personal information:</legend>

 First name:

<input type="text" name="firstname" value="Mickey">

 Last name:

<input type="text" name="lastname" value="Mouse">

 <input type="submit" value="Submit">

 </fieldset>

</form>

The <select> Element:

The <select> element defines a drop-down list: The <option> elements defines an

option that can be selected. By default, the first item in the drop-down list is

selected. Use the multiple attribute to allow the user to select more than one value

To define a pre-selected option, add the selected attribute to the option:

Ex.

<select name="cars">

 <option value="volvo">Volvo</option>

 <option value="saab">Saab</option>

 <option value="fiat">Fiat</option>

 <option value="audi">Audi</option>

</select>

The <textarea> Element:

The <textarea> element defines a multi-line input field

<textarea name="message" >

The cat was playing in the garden.

</textarea>

The <button> Element:

The <button> element defines a clickable button:

<button type="button" onclick="alert('Hello World!')">Click Me!</button>

HTML Input Types:

Here are the different input types you can use in HTML:

<input type="text"> defines a one-line text input field:

Input Type Password:

<input type="password"> defines a password field:

Input Type Reset

<input type="reset"> defines a reset button that will reset all form values to their

default values:

Input Type Checkbox:

<input type="checkbox"> defines a checkbox.

Checkboxes let a user select ZERO or MORE options of a limited number of

choices.

Input Type Date:

The <input type="date"> is used for input fields that should contain a date.

Input Type Email:

The <input type="email"> is used for input fields that should contain an e-mail

address. Depending on browser support, the e-mail address can be automatically

validated when submitted.

Input Type File:

The <input type="file"> defines a file-select field and a "Browse" button for file

uploads.

Assignments:

Set A:

1) This is how the HTML code above will be displayed in a browser

Set B

2) Design an HTML form for customer registration visiting a departmental store.

Form should consists of fields such as name, contact no.,gender, preferred days

of purchasing, favorite item(to be selected from a list of items),suggestions

etc.. You should provide button to submit as well as reset the form contents.

3) Design an HTML form to take the information of a customer for booking a

travel plan consisting of fields such as name, address, contact no., gender,

preferred season(Checkboxes), location type(to be selected from a list) etc. You

should provide button to submit as well as reset the form contents. (All the

fields should be properly aligned)

4) Design a HTML form for Bus Ticket Reservation consisting of fields for Name,

Address, contact no, source station(Dropdown list), Destination station, Date of

booking, date of journey, no of passenger, name of passenger, gender of

passenger etc. (Use proper alignment)

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Exercise 6: Image Mapping

Introduction:

With image maps, you can add clickable areas on an image.

Image Maps:

The <map> tag defines an image-map. An image-map is an image with clickable

areas. The idea behind an image map is that you should be able to perform

different actions depending on where in the image you click. To create an image

map you need an image, and a map containing some rules that describe the

clickable areas.

The Image:

The image is inserted using the tag. The only difference from other images

is that you must add a usemap attribute:

The usemap value starts with a hash tag # followed by the name of the image map,

and is used to create a relationship between the image and the image map.

The Map:

Then add a <map> element. The <map> element is used to create an image map,

and is linked to the image by using the name attribute:

<map name="mymap">

The name attribute must have the same value as the usemap attribute.

The Areas:

Then add the clickable areas.

A clickable area is defined using an <area> element.

Shape:

You must define the shape of the area, and you can choose one of these values:

• rect - defines a rectangular region

• circle - defines a circular region

• poly - defines a polygonal region

• default - defines the entire region

Coordinates:

You must define some coordinates to be able to place the clickable area onto the

image.

The coordinates come in pairs, one for the x-axis and one for the y-axis.

The coordinates 34, 44 is located 34 pixels from the left margin and 44 pixels from

the top:

Ex. <area shape="rect" coords="34, 44, 270, 350" href="computer.htm">

Circle:

To add a circle area, first locate the coordinates of the center of the circle:

337, 300

Then specify the radius of the circle:

44 pixels

<area shape="circle" coords="337, 300, 44" href="coffee.htm">

Assignments:

Set A:

Create a picture in paint brush consisting of circle, triangle and square. Insert this

picture on webpage. Create image map such that once click on circle shape it

should display web page about circle, once click on square square should display

separate page in new tab and so on

Set B

Display India.jpg image on web page consisting of different states. Once click on

any state, it should open new web page consisting of information about that state

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Exercise 7: Styling HTML with CSS

Introduction:

CSS stands for Cascading Style Sheets.

CSS describes how HTML elements are to be displayed on screen, paper, or in

other media. CSS saves a lot of work. It can control the layout of multiple web

pages all at once.

CSS can be added to HTML elements in 3 ways:

1. Inline - by using the style attribute in HTML elements

2. Internal - by using a <style> element in the <head> section

3. External - by using an external CSS file

Inline CSS:

An inline CSS is used to apply a unique style to a single HTML element. An inline

CSS uses the style attribute of an HTML element. This example sets the text color

of the <h1> element to blue:

Example:

<h1 style="color:blue;">This is a Blue Heading</h1>

Internal CSS:

An internal CSS is used to define a style for a single HTML page. An internal CSS

is defined in the <head> section of an HTML page, within a <style> element:

<html>

<head>

<style>

body {background-color: powderblue;}

h1 {color: blue;}

p {color: red;}

</style>

</head>

<body>

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

</body>

</html>

External CSS:

An external style sheet is used to define the style for many HTML pages. With an

external style sheet, you can change the look of an entire web site, by changing one

file!. To use an external style sheet, add a link to it in the <head> section of the

HTML page:

<html>

 <head>

<link rel="stylesheet" href="styles.css">

 </head>

<body>

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

</body>

</html>

An external style sheet can be written in any text editor. The file must not contain

any HTML code, and must be saved with a .css extension.

Here is how the "styles.css" looks:

body {

background-color: powderblue;

 }

h1 {

color: blue;

}

p {

 color: red;

 }

External References:

External style sheets can be referenced with a full URL or with a path relative to

the current web page. This example uses a full URL to link to a style sheet:

<link rel="stylesheet" href="styles.css">

Most commonly used CSS properties:

Property Description Values

Color Sets the color of a text Color name

text-align
Aligns the text in an

element
left, right, center, justify

text-decoration Adds decoration to text
none, underline, overline,

line-through

Background-color
Sets background color for

the element
Color_name

font-family
Specifies the font family

for text

family-name, generic-

family, inherit

font-size
Specifies the font size of

text

xx-small, x-small, small,

medium, large, x-large,

xx-large, smaller, larger,

length, %, inherit

font-style
Specifies the font style for

text

normal, italic, oblique,

inherit

background-image Defines an element's

background image.

url of background-image

border Sets the width, style, and

color for all four sides of

an element's border.

Border_size

border-color Sets the color of the

border on all the four

sides of an element.

border-color

Assignments:

Set A

1. Create HTML web page with following specifications

i) Title should be about your College.

ii) Put image in the background

iii) Place your college name at the top of page in large text followed

by address in smaller size.

iv) Add names of courses offered, each in different color, style and

font

v) Add scrolling text about college.

vi) Add any image at the bottom.

(use External CSS to format the webpage)

2. Write HTML code to design a website for Online Shopping. Design home

page which consist of list of items each with hyperlink, clicking on which

should display related information on separate web page. (Use external CSS

to format each web page)

Set B

1. Write a HTML code to display Theory Time Table of FYBBA(CA). Use

internal CSS to format the table

2. Write HTML code which generates the following output And Display each

element of list in different size, color & font. Use external CSS to format the

list

• Non flowering plants

o Fern

o Spore

• Flowering plants

� Lilly

� Rose

1. Red Rose

2. Pink Rose

3. Create HTML page with following specifications

i. Title should be about your City.

ii. Color the background by Pink color.

iii. Place your city name at the top of page in large

text and in blue color.

iv. Add names of the landmarks in your city, each in

different color, style and font v) Add scrolling

text about your City.

v. Add any image at the bottom.

(Use inline CSS to format the web page)

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Exercise 8: JavaScript

Introduction:

JavaScript is the programming language of HTML and the Web. JavaScript is one

of the 3 languages all web developers must learn:

 1. HTML to define the content of web pages

 2. CSS to specify the layout of web pages

 3. JavaScript to program the behavior of web pages

The <script> Tag:

In HTML, JavaScript code must be inserted between <script> and </script> tags.

JavaScript Functions and Events. A JavaScript function is a block of JavaScript

code, that can be executed when called for. For example, a function can be called

when an event occurs, like when the user clicks a button.

JavaScript in <head> or <body>

You can place any number of scripts in an HTML document.

Scripts can be placed in the <body>, or in the <head> section of an HTML page, or

in both.

JavaScript in <head>

In this example, a JavaScript function is placed in the <head> section of an HTML

page. The function is invoked (called) when a button is clicked:

JavaScript Display Possibilities

JavaScript can "display" data in different ways:

• Writing into an HTML element, using innerHTML.

• Writing into the HTML output using document.write().

• Writing into an alert box, using window.alert().

• Writing into the browser console, using console.log().

Using innerHTML:

To access an HTML element, JavaScript can use

the document.getElementById(id) method. The id attribute defines the HTML

element. The innerHTML property defines the HTML content

JavaScript Programs:

A computer program is a list of "instructions" to be "executed" by a computer. In a

programming language, these programming instructions are called statements.

A JavaScript program is a list of programming statements. In HTML, JavaScript

programs are executed by the web browser.

JavaScript Statements:

JavaScript statements are composed of Values, Operators, Expressions, Keywords,

and Comments. Semicolons separate JavaScript statements.

Add a semicolon at the end of each executable statement:

var a, b, c; // Declare 3 variables

a = 5; // Assign the value 5 to a

b = 6; // Assign the value 6 to b

c = a + b; // Assign the sum of a and b to c

JavaScript Variables:

In a programming language, variables are used to store data values. JavaScript uses

the var keyword to declare variables. An equal sign is used to assign values to

variables. In this example, x is defined as a variable. Then, x is assigned (given)

the value 6:

var x;

x = 6;

Assignments:

Set A

1. Write a java script program to accept a number form user and display its

multiplication table

2. Write a java script program to accept a number form user and calculate and

display its sum of digits

3. Write a java script program to accept a number from user and check whether

it is Armstrong number or not

4. Write a java script program to accept a number from user and check whether

it is perfect number or not.

5. Write java script program to accept a number from user and check whether it

is prime number or not

6. Write a java script program to accept a string from user and display the

count of vowel characters from that string.

7. Write a java script program to accept a string and character from user and

check the count of occurrences of that character in string.

8. Write a JavaScript program to Display current Day, Date, Month, Year and

Time on the web

9. page and greet the user accordingly.

10. Write a java script program to accept the value of n and display all odd

numbers up to n.

11. Write a JavaScript program to construct the following pattern up to n lines,

using a nested for loop.

*

* *

* * *

12. Write a JavaScript program to calculate the volume of a sphere.

Set B

13. Write a JavaScript Program to read a number from user, store its factors into

the array and display that array. (Handle onClick Event)

14. Design a student registration form with fields Name, Address, city and Pin-

Code.

15. Write a java script program to perform following validation Check name

should not be empty and contain alphabets onlyPin-code must be 6 digits

only

16. Design a login form with fields User Name, Password and Login button.

Write a java script code to accept username and password, validate login

details and display a message accordingly.

17. Write a java script code to accept a sentence from the user and alters it as

follows: Every space is replaced by * and digits are replaced by ?

18. Write a JavaScript Program to accept user name and password from an user,

if User name and Password is same then display his score card on the next

page as shown below.

19. Write a java script code to accept a number from user and write a function to

calculate sum of all odd digits of that number.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Section II

(RDBMS)

Table of Contents for Section-II (RDBMS)

Assignment No. 1 Data Type, PLSQL Block and Control Structure

Assignment No. 2 Error and Exception Handling

Assignment No. 3 Function

Assignment No. 4 Procedure

Assignment No. 5 Cursors

Assignment No. 6 Triggers

Assignment No. 7 Package

Assignment Completion Sheet

Sr. No Assignment Marks

(out of 5)

Teacher

Sign

1 Data Type, PLSQL Block and

Control Structure

2 Error and Exception Handling

3 Function

4 Procedure

5 Cursor

6 Trigger

7 Package

Total (out of 40)

Total (out of 10)

Assignment No. 1: Data Type, PLSQL Block and Control Structure

A data type specifies, what kind of data you want to store in the table field.
While creating table, for each column, you have to use a datatype. There are
different categories of data types in PostgreSQL listed in the following

table

Type Data Type Description

Numeric Smallint

 2-byte small-range integer

Types

integer, int A signed, fixed precision 4-byte

 Bigint stores whole numbers, large range 8 byte

 Real 4-byte, single precision, floating-point number

 Serial 4-byte auto incrementing integer

 double precision 8-byte, double precision, floating-point number

 numeric(m,d)

Where m is the total digits and d is the number of

digits after

 the decimal.

Character character(n), char(n) Fixed n-length character strings.

Types character varying(n), A variable length character string with limit.

 varchar(n)

 Text

A variable length character string of unlimited

length.

Monetary

Types Money currency amount,8 bytes

Boolean type Boolean It specifies the state of true or false,1 byte.

Date/Time

Type Date date (no time of day),4 byte.

 Time time of day (no date),8 byte

 time with time zone times of day only, with time zone,12 bytes

� PLSQL Block:

A PL/SQL block is program structure which is used to write a SQL and PL/SQL

statements.

A PL/SQL block consists of three sections: declaration, executable, and exception-

handling section. In a block, the executable section is mandatory while the

declaration and exception-handling sections are optional.

Types of PL/SQL Block

1. Named PL/SQL Block:

 A PL/SQL block which has a name. Example: Functions or Procedures

written in PL/SQL are known as named PLSQL block . A named block is

stored into the Oracle Database server and can be reused later.

2. Anonymous PL/SQL Block

A block without a name is an anonymous block. An anonymous block

is not saved in the Oracle Database server, so it is just for one-time use.

The PL/SQL block structure is represented as follows:

Declaration

 Variable declaration section

Begin

 Execution Section

Exception

Exception Section

End;

In the given structure,

1. Declaration Section: This section is used to declare variables, allocate

memory for cursors, and define data types.

2. Execution Section: A PL/SQL block has an executable section. An

executable section starts with the keyword BEGIN and ends with the

keyword END. This section should have at least one executable

statement.

3. Exception-handling section: A PL/SQL block has an exception-

handling section that starts with the keyword EXCEPTION. The

exception-handling section is where you catch and handle exceptions

(run time errors) raised by the code in the execution section.

PL/SQL Attribute:

PL/SQL variables and cursors have attributes, which are properties that let

you reference the datatype and structure of an item from table without repeating its

definition. A percent sign (%) is used to represent the attribute.

%TYPE

If you want to declare variables that will hold database values

then %TYPE attribute is used.

Syntax: VariableName TableName.ColumnName%TYPE;

 Example: my_title books.title%TYPE;

%ROWTYPE

If you want to declare a variable that will hold number of records

then %ROWTYPE attribute is used

Syntax: VariableName Table_Name%ROWTYPE;

 VaribleName Cursor_Name%ROWTYPE;

Example:

 1. My_Book book%ROWTYPE;

2. CURSOR c1 is Select * from book;

 Book_rec c1%ROWTYPE;

� Steps for creating and executing PLSQL Block:

1. Write a PLSQL in Notepad

2. On SQL Command prompt type SET SERVEROUTPUT ON

3. Copy the PLSQL block and paste it on SQL prompt.

4. Compile the block by giving ‘/’ and press enter key.

5. If the block is compiled successfully the output will be displayed.

6. If the block consist some errors then you will receive a messes “PLSQL

block created with Compilation error”

7. Type Show Error command on SQL prompt, solve the error and recompile.

If the block is compiled successfully the output will be displayed.

Example 1: PLSQL block for addition of two numbers

declare

 a number := &a;

 b number :=&b;

 c number;

begin

c:=a+b;

dbms_output.put_line('Addition is ' || c);

end;

Example 2: PL/SQL block which accept value from user to insert it into

student table (Using %TYPE attribute)

 create table student(rno number primary key,sname varchar2(20),per

number(3,2));

declare

 rn student.rno%TYPE;

name student.sname%TYPE;

p student.per%TYPE;

begin

rn:=&rn;

name:=’&name’;

p:=&p

insert into student values(rn,name,p);

dbms_output.put_line('One record inserted successfully…!’);

end;

Example 3: PL/SQL block which display the records from student table.

 (Using %ROWTYPE attribute)

Declare

 stud_rec student%ROWTYPE;

Begin

select * into stud_rec from student ;

dbms_output.put_line(‘Student Roll=’||stud_rec.rno);

dbms_output.put_line(‘Student Name=’||stud_rec.sname);

dbms_output.put_line(‘Student Percentage=’||stud_rec.per);

End;

 Control Statement: According to the structure theorem, any computer program

can be written using the basic control structures. They can be combined in any way

necessary to deal with a given problem.

• The Condition structure tests a condition, then executes one sequence of

statements instead of another, depending on whether the condition is true or

false. A condition any variable or expression that returns a Boolean value

(TRUE or FALSE).

• The iteration structure executes a sequence of statements repeatedly as

long as a condition holds true. The sequence structure simply executes a

sequence of statements in the order in which they occur.

� Conditional Statements:

A conditional statement specifies an action (or set of actions) that should
be executed by checking some logical condition, based on the result of

logical condition the sequence of statements are executed.

1. IF…. THEN Statement: IF….THEN statement, a statement or block of
statements is executed if given condition evaluates true.

Syntax:

 IF condition THEN

 Statements;

END IF;

 Example:

 IF class=’FY’ THEN

 dbms_output.put_line('Welcome FY’);

END IF;

2. IF…. THEN…. ELSE Statement:

This statement allows to execute a block of statements if a condition
evaluates to true, otherwise a block of statements in else part is executed.

 Syntax:

 IF condition THEN

 Statements;

 ELSE

 Statements;

 END IF;

Example:
IF age>=18 THEN

 dbms_output.put_line('Congratulations you are eligible for voting’)

ELSE

 dbms_output.put_line('Not Eligible for voting);

END IF;

3. IF…. THEN…. ELSIF…. THEN…ELSE Statement: IF-THEN-

ELSIF provides a convenient method of checking multiple conditions.

Syntax:

 IF condition THEN

 Statements;

 ELSIF condition THEN

 Statements;

 ELSIF condition THEN

 Statements;

 ELSE

 Statements;

 END IF;

 Example:

IF (a = 10) THEN

 dbms_output.put_line('Value of a is 10');

ELSIF (a = 20) THEN

 dbms_output.put_line('Value of a is 20');

 ELSIF (a = 30) THEN

 dbms_output.put_line('Value of a is 30');

 ELSE

 dbms_output.put_line('None of the values is matching');

 END IF;

 4. CASE Statement: The PL/SQL CASE Statement provides facility to execute

a sequence of statements based on a selector. A selector may be variable, function

or an expression.

Syntax:

CASE [expression]

 WHEN condition1 THEN result1

 WHEN condition2 THEN result2

 WHEN condition_n THEN result_n

 ELSE result

END;

Example:

DECLARE

 grade char(1) := 'C';

BEGIN

 CASE grade

 when 'A' then

 dbms_output.put_line('Distinction');

 when 'B' then

 dbms_output.put_line('First class');

 when 'C' then

 dbms_output.put_line('Second class');

 when 'D' then

 dbms_output.put_line('Pass class');

 else

 dbms_output.put_line('Failed');

 END CASE;

END;

� The Iteration Structure

Loops are iterative control statements. They are used to repeat execution of

one or more statements for defined number of times. The looping statements

are as follows:

1. PL/SQL Exit Loop: In this, the set of statements are executed at

least once before termination of loop. There should be an EXIT condition in

the loop, otherwise the loop will get into an infinite number of iterations.

 Syntax

LOOP

Statements;

EXIT;

[or EXIT WHEN condition;]

END LOOP;

 Example

DECLARE

 i NUMBER := 1;

BEGIN

 LOOP

 dbms_output.put_line(i);

 i := i+1;

 EXIT WHEN i>5;

 END LOOP;

END;

2. PL/SQL WHILE Loop: It is used when a set of statements should be executed

as long as condition is true. The condition is checked at the beginning of each

iteration and continues until condition becomes false.

Syntax:

WHILE [condition]

 LOOP Statements;

END LOOP;

Example:

DECLARE

 i INTEGER := 1;

BEGIN

 WHILE i <= 5 LOOP

 dbms_output.put_line(i);

 i := i+1;

 END LOOP;

END;

3. PL/SQL FOR Loop: It is used to execute a set of statements for a fixed number

of times. It is iterated between the start and end integer values.

 Syntax:

FOR counter IN initial_value .. final_value LOOP

 LOOP statements;

END LOOP;

Example

BEGIN

 FOR k IN 1..5 LOOP

 dbms_output.put_line(k) ;

END LOOP;

END;

Assignments:

SET A:

1. Write a PL/SQL block to accept a number and display multiplication

table of the given number.

2. Write a PL/SQL block which will accept student details, calculate the

class using per value and insert the record into Student (rno, sname, class,

per, class) table.

3. Write a PL/SQL block which will accept two numbers from user, check

whether numbers are positive or negative. If positive number then display

only the odd numbers between the entered numbers.

SET B

1. Write a PL/SQL block which will accept roll number of a student and

display record of student from student table(use %ROWTYPE attribute)

2. Write a PL/SQL block which will accept roll number from student, select

name and percentage of the student and calculate grade using percentage

value. Display the record.(use %TYPE)

3. Write a PL/SQL block which will display ‘FYBBA(CA)’ ten times on

screen. Odd index number must display ‘FYBBA(CA)’ and even index

number position in reverse case ‘fybba(ca)’.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Assignment No. 2: Error and Exception Handling

An error occurred during the execution (run time) of program is called exception

in PL/SQL. PL/SQL provides the facility to catch errors by declaring conditions in

exception block in the program and necessary action to be taken to rectify the

error. Exception can be User defined (these are logical error defined by user) or

System defined.

System defined (Internal) exceptions are raised automatically by the runtime

system. User defined exception should be raised explicitly by RAISE statements.

Syntax:

Declare

 < Declaration Section>

Begin

 <Statements>

Exception

 When condition Then

 Handler statements

 End;

Example:

 DECLARE

Salary number;

BEGIN

Salary:=&Salary;

 EXCEPTION

 WHEN Salary<=0 THEN

DBMS_OUTPUT.PUT_LINE('Error:: Salary must be a positive

number..');

 END;

� Types of Exception

1. Predefined / System Defined Exception :

Predefined exception is raised automatically whenever there is a violation of

Oracle coding rules. Predefined exceptions are those like ZERO_DIVIDE, which

is raised automatically when we try to divide a number by zero. Other built-in

exceptions are given below.

Unexpected Oracle errors can be handled using OTHERS handler. It can

handle all raised exceptions that are not handled by any other handler. It must

always be written as the last handler in exception block.

Exception Raised when

DUP_VAL_ON_INDEX When you try to insert a duplicate value into a

unique column.

INVALID_CURSOR It occurs when we try accessing an invalid cursor.

INVALID_NUMBER On usage of something other than number in place

of number value.

LOGIN_DENIED At the time when user login is denied.

TOO_MANY_ROWS When a select query returns more than one row and

the destination variable can take only single value.

VALUE_ERROR When an arithmetic, value conversion, truncation, or

constraint error occurs.

CURSOR_ALREADY_OP

EN

Raised when we try to open an already open cursor.

ZERO_DIVIDE, Raised automatically when we try to divide a

number by zero.

NO_DATA_FOUND Raise when no data is fetched in SELECT

statement.

OTHER Raise when no exception is matched

Example:

PL/SQL block to accept customer name, address and display. If not found

then use system defined exception.

DECLARE

 c_id customers.id%type := 5;

 c_name customers.name%type;

 c_addr customers.address%type;

BEGIN

 SELECT name, address INTO c_name, c_addr FROM customers

 WHERE id = c_id;

DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

2. User-defined Exceptions:

PL/SQL allows you to define your own exceptions according to the need of

your program. A user-defined exception must be declared and then raised

explicitly, using either a RAISE statement or the

procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR

Syntax:

 DECLARE

 exception_name EXCEPTION;

 BEGIN

 <Execution block>

 RAISE <exception_name>

 EXCEPTION

 WHEN <exception_name> THEN

 <Handler>

 END;

� Steps to create User-Defined Exception:

1. Declare User-defined exception: Exception must be declared before it get

used.

 Example:

 exception_name EXCEPTION;

2. Raise Exception: Raise the exception when error condition occurs.

 Example:

 RAISE exception_name;

3. Handling exception: Once the exception is raised then control transfers to

the appropriate exception block, checks the name of the exception with in

exception block, if found then executes the error message or exception

handling code.

Example :

 EXCEPTION

WHEN exception_nameTHEN

<Exception handling code>

Example :

Create an exception Negative_No and raise the exception when entered number is

negative.

 Declare

 Negative_No Exception;

 Num number;

 Begin

 Num:=&Num;

 if Num<0 then

 RAISE Negative_No;

 else

 dbms_output.put_line('Num='||Num);

 End If;

Exception

 When Negative_No then

 dbms_output.put_line('error:: Enter positive number...!');

 End;

Assignments:

SET A:

Consider the following entities and their relationships.

Wholesaler (w_no, w_name, address, city)

Product (product_no, product_name, rate)

Relation between Wholesaler and Product is Many
to Many with quantity as descriptive attribute.

Constraint: Primary key, rate should be > 0.

Create a RDB in 3NF and write PL/SQL blocks in Oracle for the

following:

1. Write a function to accept quantity from user. Quantity must be within range
50-200. If user enters the quantity out of range then raise an user defined
exception “quantity_out_of _range” otherwise enter the record in table.

2. Write a PL/SQL block which accept rate from user. If user enters rate less
than or equal to zero then raise an user defined exception
“Invalid_Rate_Value” otherwise display message “Correct Input”.

3. Write a function to accept product name as parameter. If entered product

name is not valid then raise an user defined
exception”Invalid_Product_Name” otherwise display product details of
specified product.

SET B:

 Consider the following entities and their relationships.

Student (rollno, sname, class, timetable, mobileno)

Lab (LabNo, LabName, capacity, equipment)

Relation between Student and Lab is Many to One.

Constraint: Primary Key, capacity should not be null.

Create a RDB in 3NF and write PL/SQL blocks in Oracle for the

following:

1) Write a function to accept lab number from user as parameter. ” if user

enters invalid lab number then raise an user defined exception

“Invalid_Lab_No” otherwise display the student details of the same lab.

2) Write a PL/SQL block which accept a mobile number from user. If

mobileno less than or more than 10 digits then raise an user defined

exception “Invalid_Mobile No” otherwise display the “Correct input…! “.

3) Write a PL/SQL block which accepts lab detail from user. If capacity is

more than 40 then raise an user defined exception

“Invalid_Capacity_Range” otherwise insert the record in the table.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Assignment No. 3: Procedure

The PL/SQL stored procedure or simply a procedure is a PL/SQL block which

performs one or more specific tasks. It is just like procedures in other

programming languages. The procedure contains a header and a body section

� Header: The header contains the name of the procedure and the parameters

or variables passed to the procedure.

� Body: The body contains a declaration section, execution section and

exception section similar to a general PL/SQL block.

Syntax:

CREATE [OR REPLACE] PROCEDURE procedure_name

 (parameterName [parameterType(IN,OUT,INOUT])

parameterDatatype]

IS

 [declaration_section]

BEGIN

 executable_section

[EXCEPTION

 exception_section]

END [procedure_name];

Example:

CREATE OR REPLACE PROCEDURE display AS

BEGIN

 dbms_output.put_line('This is a procedure demo…!');

END;

/

After executing above code using SQL prompt, it will show “Procedure Created

“message.

� Executing Procedure:
 A standalone procedure can be executed by using two ways

1. Using the EXECUTE keyword: The above procedure

named 'display' can be executed using EXECUTE keyword with the

following output

 SQL> EXECUTE display;

 This is a procedure demo…!

PL/SQL procedure successfully completed.

 2. Calling the name of the procedure from a PL/SQL block: The

procedure can also be called from another PL/SQL block

Example :

BEGIN

 display;

END;

The above call will display the output:

 This is a procedure demo…!

PL/SQL procedure successfully completed.

� Deleting a Standalone Procedure:

A standalone procedure can be deleted with the DROP

PROCEDURE statement. Following statement is used for deleting a

procedure.

 DROP PROCEDURE procedure-name;

 You can drop the “display” procedure by using the following statement

 Example: DROP PROCEDURE display;

Parameter Modes in PL/SQL procedure

Parameter

Type

Description

IN Parameter This parameter is used for giving input to the procedure. It is a

read-only variable inside the procedure. Values of IN parameter

cannot be changed inside the procedure.

OUT Parameter This parameter is used for getting output from the procedure .It

is a read-write variable inside the procedure. Their values can

be changed inside the procedure.

INOUT

Parameter

This parameter is used for both giving input and for getting

output from the procedure. It is a read-write variable inside the

procedure. Their values can be changed inside the procedure.

Example 1: Using IN Parameter in Procedure: The following procedure is

accepting a name as a parameter and will display the message

CREATE OR REPLACE PROCEDURE Display_Msg (name IN VARCHAR2) IS

BEGIN

 dbms_output.put_line (‘Welcome '|| name);

END;

Execute procedure and display output using following statement:

sql> EXECUTE Display_Msg(‘Aarushi’);

 Welcome Aarushi

 PL/SQL procedure successfully completed.

Example 2: Using OUT Parameter in Procedure: When OUT parameter is used

in procedure then the procedure must be call with in the PLSQL block.

The following example accepts two IN parameter and one OUT parameter and

checks the maximum number.

� Create a procedure

Create or Replace PROCEDURE getMax(x IN number, y IN number, z OUT

number) IS

BEGIN

 IF x < y THEN

 z:= x;

 ELSE

 z:= y;

 END IF;

END;

� Calling a procedure in PLSQL block

DECLARE

 a number;

 b number;

 c number;

BEGIN

 a:= &a;

 b:= &b;

 getMax(a, b, c);

 dbms_output.put_line(' Max Number is : ' || c);

END;

/

Execute the above PL/SQL block and you will get the output.

Example 3: Using IN OUT Parameter in Procedure:

The following example accepts one parameter as INOUT and calculate square of a

given number.

� Create a procedure

Create or Replace PROCEDURE getSquare(num IN OUT number) IS

BEGIN

 num:=num*num;

END;

� Calling a procedure in PLSQL block

DECLARE

 a number;

BEGIN

 a:= &a;

 getSquare(a);

 dbms_output.put_line('Square is : ' || a);

END;

/

Execute the above PL/SQL block and you will get the output.

Assignments:

SET A:

 Consider the following entities and their relationship.

Newspaper (name,language , publisher , cost)

 Cities (pincode , city, state)

 Relationship between Newspaper and Cities is many-to-many with

descriptive attribute daily required

 Constraints: name and pincode primary key

 Create a RDB in 3NF and write PL/SQL blocks in Oracle for the following:
1) Write a procedure to calculate city wise total cost of each newspaper

2) Write a procedure which display details of news papers having cost greater

than 2 Rs.

3) Write a procedure which take display details of cities where English news

paper is supplied.

SET B:

 Consider the following entities and their relationships.

 Library(Lno, Lname, Location, Librarian, no_of_books)

 Book(Bid, Bname, Author_Name, Price, publication)

Relation between Library and Book is one to many.

Constraint: Primary key, Price should not be null.

Create a RDB in 3NF and write PL/SQL blocks in Oracle for the

following:

1) Write a procedure which will accept publication name from user and

display details of books published by it.

2) Write a procedure which will accept Library number from user and

display Book name and their price.

3) Write a procedure to display names of Libraries having books written by

“Mr. Patil”.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Assignment No. 4: Function

The PL/SQL Function is very similar to PL/SQL Procedure. The main difference

between procedure and a function is, a function must always return a value, and on

the other hand a procedure may or may not return a value. Except this, all the other

things of PL/SQL procedure are similar for PL/SQL function.

Syntax to create a function:

CREATE [OR REPLACE] FUNCTION function_name [parameters]

[(parameter_name [IN | OUT | IN OUT] datatype [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

 < function_body >

END [function_name];

The function must contain a RETURN statement RETURN clause specifies the

data type returned by the function.

� Functions are of two types:

1. Function with Parameter

2. Function without Parameter

As like procedure function can also use IN, OUT and INOUT parameter.

 Steps for using function in PLSQL:

1. Create a function

2. Write a PLSQL block to call the function and execute block

Or execute function using select statement.

Example 1: Function without using parameter to calculate total bill of specific

table.

Step 1: Creating Function

REATE OR REPLACE FUNCTION disptotal

 RETURN number IS

 tot number(5) := 0;

 BEGIN

 SELECT sum(amount) into tot FROM Bill where tno=5;

 RETURN tot;

 END;

 /

Step 2: Executing function using PLSQL block

DECLARE

 t number(2);

BEGIN

 t := disptotal();

 dbms_output.put_line('Total Bill: ' || t);

END;

/

 OR

Executing function using select statement

Select disptotal() from dual;

Example 2: Function with using IN parameter for addition of two numbers.

 Step 1: Creating Function

CREATE or REPLACE FUNCTION add(n1 in number, n2 in number)

return number is

n3 number(5);

BEGIN

n3 :=n1+n2;

return n3;

END; /

Step 2: Executing function using PLSQL block

DECLARE

 A number(5)

 B number(5);

 C number(5);

BEGIN

 A:=&A;

 B:=&B;

 C := add(A,B);

 dbms_output.put_line('Addition is: ' || C);

END;

/ OR

Executing function using select statement

Select add(3,4) as SUM from dual;

Assignments:

SET A :

 Consider the following entities and their relationships.

 Client (client_no, client_name, address, birthdate)

 Policy_info (policy_no, desc, maturity_amt, prem_amt, date)

Relation between Client and Policy_info is Many to Many

Constraint: Primary key, prem_amt and maturity_amt
should be > 0

Create a RDB in 3NF and write PL/SQL blocks in Oracle for the

following:

1) Write a function which will return total maturity amount of policies of a

particular client.

2) Write a function which will return minimum maturity amount of all policies.

3) Write a function which will return total number of policies opened no “1-

Jan-2020”

SET B:

 Consider the following Item_Supplier database

Item (itemno, itemname)

Supplier (supplier_No , supplier_name, address, city)

Relationship between Item and Supplier is many-to-many with

descriptive attribute rate and quantity

Constraints: itemno ,supplier_No primary key

 Create a RDB in 3NF and write PL/SQL blocks in Oracle for the

following:

1) Write function to print the total number of suppliers who

supplies “Keyboard”.

2) Write function which will return rate of “Harddisk” supplied by

“Mr. Patil”.

3) Write function which will take supplier number as input and

print the total number of items supplied by him.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Assignment No.5: Cursors

A cursor is a pointer that points to a result of a query. PL/SQL controls the context

area through a cursor. A cursor holds the rows (one or more) returned by a SQL

statement. The set of rows cursor holds is referred to as the active set.

PL/SQL has two types of cursors: Implicit cursors and Explicit cursors.

1. Implicit Cursor: The implicit cursors are automatically generated by

Oracle while an SQL statement is executed. These are created by default to

process the statements when DML statements like INSERT, UPDATE, and

DELETE etc. are executed. Oracle provides some attributes known as

Implicit cursor's attributes to check the status of DML operations. Some of

them are: %FOUND, %NOTFOUND, %ROWCOUNT and %ISOPEN.

The following table specifies the status of the cursor with each of its

attribute.

Attribute Description

%FOUND Its return value is TRUE if DML statements like INSERT,

DELETE and UPDATE affect at least one row or more

rows or a SELECT INTO statement returned one or more

rows. Otherwise it returns FALSE.

%NOTFOUND Its return value is TRUE if DML statements like INSERT,

DELETE and UPDATE affect no row, or a SELECT INTO

statement return no rows. Otherwise it returns FALSE. It is

a just opposite of %FOUND.

%ISOPEN Return TRUE if the cursor is open. It always returns

FALSE for implicit cursors, because the SQL cursor is

automatically closed after executing its associated SQL

statements.

%ROWCOUNT It returns the number of rows affected by DML statements

like INSERT, DELETE, and UPDATE or returned by a

SELECT INTO statement.

Example1 : Implicit Cursor

PL/SQL block to update employee table salary by adding 2000 amount in

the existing salary.

DECLARE

 total_rows number(2);

BEGIN

 UPDATE employee SET salary = salary + 2000;

 IF sql%notfound THEN

 dbms_output.put_line('No Employee updated..!);

 ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ' customers updated ');

 END IF;

 END;

2. Explicit Cursor: Explicit cursors are created by user. These cursors should

be defined in the declaration section of the PL/SQL block. It is created on a

SELECT statement which returns more than one row.

Steps for creating Explicit cursor:

1. Declare the cursor

2. Open the cursor

3. Fetch the cursor to retrieve data.

4. Close the cursor to release allocated memory.

1. Declare the cursor to initialize in the memory: Declaring the cursor

defines the cursor with a name and the associated SELECT statement.

For example:

CURSOR Stud IS SELECT rno, name, per FROM Student;

 Here Stud is name of the cursor

2. Open the cursor: Opening the cursor allocates the memory for the cursor

and makes it ready for fetching the rows returned by the SQL statement into

it.

 For example, we will open the above defined cursor as follows

 open Stud;

Fetch the cursor to retrieve data: Fetching the cursor involves accessing

one row at a time. For example, we will fetch rows from the above-opened

cursor as follows:

FETCH Stud INTO s_rno, s_name, s_per;

3. Close the cursor: Closing the cursor means releasing the allocated memory.

For example, we will close the above-opened cursor as follows

CLOSE Stud;

 Example 1: PLSQL block to display student information using explicit cursor:

DECLARE

 s_rno Student.rno%TYPE;

 s_name Student.name% TYPE;

 s_per Student.per% TYPE;

 CURSOR Stud IS SELECT rno, name, per FROM Student;

BEGIN

 OPEN Stud;

 LOOP

 FETCH Stud into s_rno, s_name, s_per;

 EXIT WHEN c_customers%notfound;

 dbms_output.put_line(s_rno || ' ' || s_name || ' ' || s_per);

 END LOOP;

 CLOSE Stud; END; /

Example 2: Display the record of a particular student using parameterized

cursor

DECLARE

 Stud_rec Student%ROWTYPE;

 CURSOR Stud(no number) IS SELECT * FROM Student where rno=no;

BEGIN

 OPEN Stud(5);

 LOOP

 FETCH Stud into Stud_rec;

 EXIT WHEN Stud%notfound;

 dbms_output.put_line(Stud_rec.rno || ' ' || Stud_rec.name || ' ' ||

Stud_rec.per);

 END LOOP;

 CLOSE Stud;

END;

Assignments:

SET A:

 Consider the following entities and their relationships.

Project (pno, pname, start_date, budget, status)

Department (dno, dname, HOD, loc)

The relationship between Project and Department is Many to One.

Constraint: Primary key.

Project Status Constraints: C – Completed,

P -
Progressive, I
– Incomplete
P

 Create a RDB in 3NF and write PL/SQL blocks in Oracle for the

following:

1) Write a cursor which will display list of projects started in month of

“January” 2020.

2) Write a cursor which will display status wise project details of each

department.

3) Write a cursor which displays the details of project having budget more

than 100000 from ‘Computer Science Department’.

SET B:

 Consider the following entities and their relationships.

Gym (Name, city, charges, scheme)

Member (ID, Name, PhoneNo, address)

Relation between Gym and member is one to many.

Constraint: Primary Key, charges must be greater than 0.

 Create a RDB in 3NF and write PL/SQL blocks in Oracle for the following:

1) Write a cursor which will display Gym details having charges more than

5000 from ‘Pune’ city.

2) Write a cursor which will display city wise Gym details.

3) Write a cursor which will display gym wise member details.(Use

Parametrized Cursor)

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Assignment No. 6: Triggers

A trigger is a stored procedure in database which automatically invokes

whenever a special event in the database occurs. For example, a trigger can be

invoked when a row is inserted into a specified table or when certain table columns

are being updated or deleted.

A trigger is fired when a DML statements like Insert, Delete, Update is executed

on a database table. A trigger is triggered automatically when an associated DML

statement is executed.

Syntax:

CREATE or REPLACE trigger [trigger_name]

[before | after]

{insert | update | delete}

on [table_name]

[for each row]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

Where,

• Create or Replace trigger [trigger_name]: Creates or replaces an existing

trigger with the trigger_name.

• [before | after]: This specifies when the trigger will be executed. Before or

after query execution.

• {insert | update | delete}: This specifies the DML operations performed by

the trigger.

• on [table_name]: This specifies the name of the table associated with the

trigger.

• [for each row]: This specifies a row-level trigger, i.e., the trigger will be

executed for each row being affected.

• [trigger_body]: This provides the operation to be performed as trigger is

fired. This is written in Declare, Begin, Exception and End block.

� Types of Trigger

1. Row-Level Trigger: A row-level trigger fires once for each row that is

affected by a triggering event.

 For example, if Delete operation is defined as a triggering event for a

particular table, and a single DELETE statement deletes five rows from that

table, the trigger fires five times, once for each row.

2. Statement-Level Trigger: A statement-level trigger fires only once for

each statement. Using the previous example, if deletion is defined as a

triggering event for a particular table, and a single DELETE statement

deletes five rows from that table, the trigger fires once.

3. BEFORE Trigger: BEFORE trigger executes before the DML statement

(INSERT, UPDATE, DELETE) execute.

4. AFTER Trigger: AFTER trigger executes after the DML statement

(INSERT, UPDATE, DELETE) executed.

5. Combination Trigger: Combination trigger are combination of two trigger

type,

Before Statement Trigger, Before Row Trigger, After Statement Trigger,

After Row Trigger

� Variables used in trigger

1. NEW: New refer to the new value for column. It is represented as

:NEW.columnName, where columnName is the name of a column in the

table on which the trigger is defined.

2. OLD: Old refer to the old value for the column. It is represented as

 :OLD.columnName, where columnName is the name of a column in the

table on which the trigger is defined.

� Error statement in trigger is written using

 Raise_application_error(Error Number,’Error Message’);

 eg: Raise_application_error(-20003,'Error:: Salary must be a positive

number');

 Example:

1) Before Update: This trigger will raise before salary is updated on “Employee”

table

Create or replace trigger emp_update before update on employee for each

row

Declare

 invalid_salary Exception;

Begin

 if(:new.salary<=0) then

 raise invalid_salary;

 end if;

Exception

 when invalid_salary then

 raise_application_error(-20003,'Error:: Salary must be a positive

number');

End;

SQL> update employee set salary=-4567;

update employee set salary=-4567

 *

ERROR at line 1:

ORA-20003: Error:: Salary must be a positive number

ORA-06512: at "MVT.EMP_UPDATE", line 9

ORA-04088: error during execution of trigger 'MVT.EMP_UPDATE'

2) Before Insert or update: This trigger will raise before salary is inserted or

updated on

 “Employee” table

Create or replace trigger emp_insert before insert or update on employee for

each row

Declare

 invalid_salary Exception;

Begin

 if(:new.salary<=0) then

 raise invalid_salary;

 end if;

Exception

 when invalid_salary then

 raise_application_error(-20002,'Error:: Salary must be a positive number');

End;

old 1: insert into employee

values(&eno,'&ename','&addr','&design',&salary)

new 1: insert into employee values(5,'EEE','baner','clerk',0)

insert into employee values(5,'EEE','baner','clerk',0)

 *

ERROR at line 1:

ORA-20002: Error:: Salary must be a positive number

ORA-06512: at "MVT.EMP_INSERT", line 9

ORA-04088: error during execution of trigger 'MVT.EMP_INSERT'

3) Before Delete: This trigger will raise before salary is deleted on “Employee”

table

 Create or replace trigger del_Emp before delete on employee for each row

Declare

 del_Emp Exception;

Begin

 raise del_Emp;

Exception

 when del_Emp then

 raise_application_error(-20001,'Error:: Record can not be deleted');

End;

Output:

delete from employee where eno=3;

delete from employee where eno=3

 *

ERROR at line 1:

ORA-20001: Error:: Record can not be deleted

ORA-06512: at "MVT.DEL_EMP", line 9

ORA-04088: error during execution of trigger 'MVT.DEL_EMP'

4) After Insert: This trigger will raise after record is inserted and mobile number

is not with in

 range on “Employee” table.

create or replace trigger emp_insert after insert on employee for each row

Declare

 invalid_mobile Exception;

 len number;

Begin

 len:=length(:new.mobile);

 if(len<10 or len>10) then

 raise invalid_mobile;

 end if;

Exception

 when invalid_mobile then

 raise_application_error(-20006,'Error:: Mobile number must be 10

digit....!');

End;

insert into employee

values(7,'Mr.Verma','pimpri','Programmer',45678,9822645);

insert into employee

values(7,'Mr.Verma','pimpri','Programmer',45678,9822645)*

ERROR at line 1:

ORA-20006: Error:: Mobile number must be 10 digit....!

ORA-06512: at "MVT.EMP_INSERT", line 11

ORA-04088: error during execution of trigger 'MVT.EMP_INSERT'

Assignments:

SET A :

Consider the following entities and their relationships.

Employee (emp_id, emp_name, address)

Investment (inv_no, inv_name, inv_date, inv_amount)

Relation between Employee and Investment is One to Many.

Constraint: Primary key, inv_amount should be > 0.

Create a RDB in 3NF and write PL/SQL blocks in Oracle for the

following:

1) Write a trigger which will fire before insert or update on Investment having

investment amount less than 10000. (Raise user defined exception and give

appropriate message)

2) Write a trigger which will fire before insert or update on Employee having

Emp id less than equal to zero (Raise user defined exception and give

appropriate message)

3) Write a trigger which will fire before insert or update on Investment having

investment date greater than current date. (Raise user defined exception and

give appropriate message)

SET B :

 Consider the following entities and their relationships.

 Bill (billno, day, tableno, total)

Menu (dish_no, dish_desc, price)

The relationship between Bill and Menu is Many to Many with quantity as
descriptive attribute.
Constraint: Primary key, price should be > 0.

Create a RDB in 3NF and write PL/SQL blocks in Oracle for the

following:

1) Write a trigger which will fire before insert or update on Menu having

price less than or equal to zero. (Raise user defined exception and give

appropriate message)

2) Write a trigger which will fire before insert or update on Bill having day

other than seven week days. (Raise user defined exception and give

appropriate message)

3) Write a trigger which will fire before insert or update on Bill having total

less than or equal to 10 Rs. (Raise user defined exception and give

appropriate message)
Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

Assignment No. 7: Package

Packages are schema objects that groups logically related PL/SQL types,

variables, and subprograms. A package will have two mandatory parts −

1. Package Specification:

Package specification contains the information about the content of the

package. It is the interface to the package which DECLARES the types, variables,

constants, exceptions, cursors, and subprograms that can be referenced from

outside the package.

All objects placed in the specification are called public objects.

The object not declared in package but used in package body is called a

private object.

 2. Package body or definition

The package body has the codes for various methods declared in the package

specification and other private declarations, which are hidden from the code

outside the package.

The CREATE PACKAGE BODY Statement is used for creating the

package body.

3. Using the Package Elements

The package elements (variables, procedures or functions) are accessed with the

following

Syntax: package_name.element_name;

Example:

DECLARE

 //variable declaration

BEGIN

Package_name.Element_name (parameter);

……

…….

END;

/

The above code will be executed on SQL prompt and package will be executed

� Steps for creating package

1. Creating a package body

2. Creating a package and calling package element into it.

3. Executing package

Example:

 Following example creates a package which consist one function and one

procedure

1. Creating a package body

create or replace package body emp_pack as

FUNCTION total_sal RETURN number IS

 totalsal number := 0;

BEGIN

 SELECT sum(salary) into totalsal FROM emp;

 RETURN totalsal;

END;

procedure empdetails(e_no IN number, e OUT emp%rowtype) IS

BEGIN

 SELECT * into e

 FROM emp where eno = e_no;

exception

when no_data_found then

dbms_output.put_line('Employee does not exist');

END;

end emp_pack;

2. Creating a package and calling package element into it.

create or replace package emp_pack as

 function total_sal return number;

 procedure empdetails(e_no IN number, e OUT emp%rowtype);

end emp_pack;

3. Executing package

Declare

enumber number:=&enumber;

emp1 emp%rowtype;

tsal number;

Begin

tsal:=emp_pack.total_sal();

emp_pack.empdetails(enumber,emp1);

dbms_output.put_line('Total salary of Employees is '||tsal);

dbms_output.put_line('Details of a given Employee is

'||emp1.eno||emp1.ename||emp1.salary);

End;

Assignments:

SET A:

 Consider the following entities and their relationships.

College (code, college_name, address)

Teacher (teacher_id, teacher_name, Qualification, specialization,

salary, Desg)

Relation between Teacher and College is Many to One.

Constraint: Primary Key, qualification should not be null.

Create a RDB in 3NF and write PL/SQL blocks in Oracle for the

following:

1) Write a package, which consists of one procedure and one function. Pass

college code as a parameter to procedure and display details of college.

Write a function which will return teacher name having maximum salary.

2) Write a package, which consists of one cursor and one trigger. Cursor

should display teachers detail and trigger should fire on Teacher table

before insert or update salary having salary less than or equal to zero.

Assignment Evaluation

0: Not Done [] 1: Incomplete [] 2: Late Complete []

 3: Need Improvement [] 4: Complete [] 5: Well Done []

Signature of Instructor

